TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→1 x3 − 1 x − 1 A 0 B +∞ C 3 D −∞ Câu 2 Thể tích[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 11 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Tính lim
x→1
x3− 1
x −1
Câu 2. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
4 .
Câu 3. Khối đa diện đều loại {5; 3} có số cạnh
Câu 4. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. a
8a
2a
5a
9 .
Câu 5. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 6. Khối đa diện đều loại {3; 4} có số cạnh
Câu 7. Khối chóp ngũ giác có số cạnh là
Câu 8. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 9. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 10. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A a3
√
3√ 3
a3
a3√3
12 .
Câu 11. Tính giới hạn lim2n+ 1
3n+ 2
A. 1
3
2
Câu 12. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 13. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 14. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
3
2a3√3
4a3
4a3√3
3 .
Trang 2Câu 15. [2-c] Giá trị lớn nhất của hàm số f (x)= ex −3x +3trên đoạn [0; 2] là
Câu 16. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 100.(1, 01)3
(1, 12)3− 1 triệu.
C m = (1, 01)3
(1, 01)3− 1 triệu. D m = 100.1, 03
3 triệu.
Câu 17. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 18. Khối đa diện đều loại {3; 5} có số mặt
Câu 19. Cho I =
Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 20. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 21. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
2
√
a2+ b2 B. ab
a2+ b2 C. √ 1
a2+ b2 D. √ ab
a2+ b2
Câu 22. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 23. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 24. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
7
11a2
a2
√ 5
a2
√ 2
4 .
Câu 25. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Cả hai đều sai B Chỉ có (II) đúng C Cả hai đều đúng D Chỉ có (I) đúng.
Trang 3Câu 26. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 27. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
6.
Câu 28. Tính lim 2n
2− 1 3n6+ n4
Câu 29. [4-1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 30. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 31. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
A 3
√
Câu 32. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 33. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
Câu 34. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
C Với mọi x ∈ (a; b), ta có f0(x)= F(x)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Câu 35. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
d: x+ 1
2 = y −5
2 = z
−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng
dđồng thời cách A một khoảng bé nhất
A ~u = (2; 1; 6) B ~u= (1; 0; 2) C ~u= (3; 4; −4) D ~u= (2; 2; −1)
Câu 36. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 37. Tính limcos n+ sin n
n2+ 1
Câu 38. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Trang 4A 12 năm B 11 năm C 10 năm D 14 năm.
Câu 39. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3√6
a3√6
a3√3
24 .
Câu 40. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 41. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 42. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
B Hàm số nghịch biến trên khoảng (−2; 1).
C Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
Câu 43. Khối đa diện đều loại {5; 3} có số mặt
Câu 44. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 45. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 46. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 47. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 ln 2x
x3ln 10 . B y
0 = 1 − 4 ln 2x 2x3ln 10 . C y
0 = 1 2x3ln 10. D y
0 = 1 − 2 log 2x
x3
Câu 48. [1] Giá trị của biểu thức 9log3 12bằng
Câu 49. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A −2 < m < −1 B (−∞; −2] ∪ [−1; +∞) C (−∞; −2)∪(−1; +∞) D −2 ≤ m ≤ −1.
Câu 50. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
√ 3
2a
√ 3
a
√ 3
2 .
Câu 51. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
Trang 5(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
Câu 52. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 53. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 54. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±√2 B m= ±1 C m= ±√3 D m= ±3
Câu 55. Khối đa diện đều loại {3; 3} có số cạnh
Câu 56. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 57. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 58. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
A −1
1
1
Câu 59. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng 2n+ 1
B Số mặt của khối chóp bằng 2n+1.
C Số mặt của khối chóp bằng số cạnh của khối chóp.
D Số cạnh của khối chóp bằng 2n.
Câu 60. [2] Phương trình log4(x+ 1)2+ 2 = log√
2
√
4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?
Câu 61. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 62. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A. 3
1
√ 3
2 .
Câu 63. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3√ 5
a3√ 15
a3
3 .
Câu 64. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3
√ 6
a3
√ 2
a3
√ 6
36 .
Câu 65. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A 2a
√
√
√ 6
√ 3
Trang 6Câu 66. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 67. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 68. Tìm giới hạn lim2n+ 1
n+ 1
Câu 69. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối lập phương C Khối bát diện đều D Khối 12 mặt đều.
Câu 70. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 71. [1] Phương trình log3(1 − x)= 2 có nghiệm
Câu 72 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
B Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
D Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
Câu 73. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 74. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 75. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
3√
3
a3
a3
2a3√3
3 .
Câu 76. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là
A. 7
3; 0; 0
!
3; 0; 0
!
3; 0; 0
!
Câu 77. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là
A. C
20
50.(3)30
10
50.(3)40
40
50.(3)10
20
50.(3)20
450
Trang 7Câu 78 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
f(x)g(x)dx=Z f(x)dx
Z
Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx
C.
Z
( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx D.
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0
Câu 79. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 80. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
Câu 81. Hàm số nào sau đây không có cực trị
A y = x −2
2x+ 1. B y= x4− 2x+ 1. C y= x +
1
x. D y= x3− 3x
Câu 82. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 83. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = [2; 1] B. D = R \ {1; 2} C. D = R D. D = (−2; 1)
Câu 84. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√6
a√6
a√3
2 .
Câu 85. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 86. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
B F(x)= G(x) trên khoảng (a; b)
C Cả ba câu trên đều sai.
D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
Câu 87 Hình nào trong các hình sau đây không là khối đa diện?
Câu 88. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
3
2.
Câu 89. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
2a
a
a√2
3 .
Câu 90. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
Trang 8Câu 91. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 92. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 93. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
A. 1
2
1
9
10.
Câu 94. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 3ac
3b+ 2ac
3b+ 3ac
3b+ 2ac
c+ 3 .
Câu 95. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√
√ 13
√ 13
Câu 96. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 8 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.
Câu 97. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 98. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 20 mặt đều B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.
Câu 99. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
Câu 100. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 101. [1] Đạo hàm của làm số y = log x là
A y0 = 1
xln 10. B y
0 = 1
1
0 = ln 10
x .
Câu 102. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 103. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
15.
Câu 104. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A − 1
1
e.
Câu 105. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u= (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
Trang 9
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
B.
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
C.
x= 1 + 7t
y= 1 + t
z= 1 + 5t
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
Câu 106. Biểu thức nào sau đây không có nghĩa
A (−
√
√
−1
Câu 107. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3] là M = m
en, trong đó n, m là các số tự nhiên Tính S = m2+ 2n3
Câu 108 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
Câu 109. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√ 3
Câu 110. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4e+ 2. B m=
1 − 2e
4 − 2e. C m= 1+ 2e
4 − 2e. D m= 1 − 2e
4e+ 2.
Câu 111 Mệnh đề nào sau đây sai?
A Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
C F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
D.
Z
f(x)dx
!0
= f (x)
Câu 112. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = ey+ 1 C xy0 = ey
− 1
Câu 113. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 114. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.
Câu 115. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 116. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3√
3
a3√3
3
3
3 .
Câu 117. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Trang 10Câu 118. Cho hàm số y= −x3+ 3x2
− 4 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0;+∞)
C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 119. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2)= m có nghiệm thực
x ≥1
Câu 120. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m < 1
1
1
1
4.
Câu 121. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
Câu 122. Dãy số nào sau đây có giới hạn khác 0?
A. n+ 1
sin n
1
1
√
n.
Câu 123. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 124. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
Câu 125. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. a
√
38
3a√38
3a
3a√58
29 .
Câu 126. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 127. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
1
4.
Câu 128. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 129. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
3
a3
a3
6 .
Câu 130. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2 (e) là:
A. 8
1
8
1
9.
HẾT