TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Cho hình hộp chữ nhật ABCD A′B′C′D′ có AB = a, AD = b,[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
b2+ c2
√
a2+ b2+ c2 B. c
√
a2+ b2
√
a2+ b2+ c2 C. abc
√
b2+ c2
√
a2+ b2+ c2 D. b
√
a2+ c2
√
a2+ b2+ c2
Câu 2. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 3. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 4. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 5. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 6. Dãy số nào sau đây có giới hạn là 0?
A. −5
3
!n
e
!n
3
!n
3
!n
Câu 7. Khẳng định nào sau đây đúng?
A Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B Hình lăng trụ đứng là hình lăng trụ đều.
C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D Hình lăng trụ tứ giác đều là hình lập phương.
Câu 8. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
!x là
Câu 9. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
2 .
Câu 10. Khối đa diện đều loại {3; 4} có số cạnh
Câu 11. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
Câu 12. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
C lim
x→a + f(x)= lim
x→a − f(x)= +∞
Trang 2Câu 13. Cho hàm số y= x3+ 3x2
Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên khoảng (−2; 1).
B Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
C Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 14. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 3
a3
√ 3
a3
4 .
Câu 15. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
3
a√6
a√6
a√6
2 .
Câu 16. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
a√3
√
√ 3
2 .
Câu 17. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
5
4 < m < 0
Câu 18. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?
Câu 19. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
2
a3
√ 3
a3
√ 3
a3
√ 3
6 .
Câu 20. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 21. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
A. 1
1
1
2.
Câu 22. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 23. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 1
8
8
1
3.
Câu 24. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
1
3.
Câu 25. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
Câu 26. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Trang 3Câu 27. Khối đa diện đều loại {4; 3} có số mặt
Câu 28. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 29. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 30. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Câu 31. Khối đa diện đều loại {3; 3} có số mặt
Câu 32. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 33. Hàm số y= x3
− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 34. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3√ 15
a3
a3√ 5
25 .
Câu 35. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 36. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 37. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
5.
Câu 38. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 39. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 40. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 41. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 42. Tứ diện đều thuộc loại
Câu 43. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Trang 4Câu 44. Khối đa diện đều loại {3; 4} có số mặt
Câu 45. Cho
Z 1
0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
Câu 46. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 47. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
A. 3
Câu 48. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 49. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B Số đỉnh của khối chóp bằng số mặt của khối chóp.
C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 50. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là 1 − √2, phần ảo là −
√
3 B Phần thực là √2, phần ảo là 1 −
√ 3
C Phần thực là
√
2 − 1, phần ảo là −
√
√
2 − 1, phần ảo là
√ 3
Câu 51. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 8a
3√
3
4a3
√ 3
a3
√ 3
8a3
√ 3
9 .
Câu 52. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
A. 3
5
Câu 53. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 54. Dãy số nào có giới hạn bằng 0?
A un= −2
3
!n B un = n2− 4n C un = n3− 3n
n+ 1 . D un = 6
5
!n
Câu 55. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3
3√ 3
a3
√ 3
6 .
Câu 56. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 57. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Trang 5Câu 58. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 59. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
√
√
√ 3
Câu 60. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 61. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 62. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 63. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. " 2
5;+∞
!
3
#
5
#
"
−2
3;+∞
!
Câu 64. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 65. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
a√2
√
√ 3
Câu 66. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
Câu 67. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?
A. 9
3
2.
Câu 68. Khối lập phương thuộc loại
Câu 69. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 3ac
3b+ 2ac
3b+ 2ac
3b+ 3ac
c+ 1 .
Câu 70. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 71. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e + 1 B T = e + 2
e. C T = e + 3 D T = 4 + 2
e.
Trang 6Câu 72. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên sai B Chỉ có (II) đúng C Cả hai câu trên đúng D Chỉ có (I) đúng.
Câu 73. Khối đa diện đều loại {3; 3} có số cạnh
Câu 74. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a√3
a
Câu 75. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
3.
Câu 76. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
− 1 D xy0 = ey+ 1
Câu 77. Tính giới hạn lim2n+ 1
3n+ 2
A. 1
2
3
2.
Câu 78. Tính lim 2n
2− 1 3n6+ n4
Câu 79. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A (−1; 0) B (−∞; −1) và (0; +∞) C (−∞; 0) và (1; +∞) D (0; 1).
Câu 80. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 81 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
C Cả ba đáp án trên.
D Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 82. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
4035
2017
2018.
Câu 83. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Trang 7Câu 84. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
2
a2√ 5
11a2
a2√ 7
8 .
Câu 85. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −1
2;+∞
!
2;+∞
!
2
!
2
!
Câu 86. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 87. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a
√ 39
a
√ 39
a
√ 39
13 .
Câu 88. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 89. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Chỉ có (II) đúng B Cả hai đều đúng C Chỉ có (I) đúng D Cả hai đều sai.
Câu 90. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?
Câu 91. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
A. 7
-2
3.
Câu 92. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 93. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 94. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 95. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 96. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. 2a
√
57
a√57
√
√ 57
17 .
Trang 8Câu 97. [3-1212h] Cho hình lập phương ABCD.A BC D, gọi E là điểm đối xứng với A qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
18.
Câu 98. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 50, 7 triệu đồng B 70, 128 triệu đồng C 20, 128 triệu đồng D 3, 5 triệu đồng.
Câu 99. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 100. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là
A. C
20
50.(3)20
20
50.(3)30
40
50.(3)10
10
50.(3)40
450
Câu 101. Dãy số nào sau đây có giới hạn khác 0?
A. sin n
n+ 1
1
1
√
n.
Câu 102. [2D1-3] Cho hàm số y = −1
3x
3+mx2+(3m+2)x+1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2] ∪ [−1; +∞) B (−∞; −2)∪(−1; +∞) C −2 < m < −1 D −2 ≤ m ≤ −1.
Câu 103. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số đồng biến trên khoảng (1; 2) B Hàm số nghịch biến trên khoảng (0; 1).
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 104. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 105. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A −1
1
Câu 106. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 107. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 108. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 0 B M= e, m = 1 C M = e, m = 1
e. D M = 1
e, m = 0
Câu 109. [1] Tập xác định của hàm số y= 2x−1là
A. D = R B. D = (0; +∞) C. D = R \ {1} D. D = R \ {0}
Câu 110. Tính lim
x→3
x2− 9
x −3
Trang 9Câu 111. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3
√ 2
a3
√ 6
a3√3
48 .
Câu 112. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 113. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0;+∞)
C Hàm số đồng biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 114. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
5
Câu 115. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
1
Câu 116. [3-12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 117. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 6 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.
Câu 118. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 119. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc
60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 5a
3√
3
a3√3
2a3√3
4a3√3
3 .
Câu 120. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?
Câu 121. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
A. 1079
23
1728
1637
4913.
Câu 122. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3) − √ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 123. [2] Tổng các nghiệm của phương trình 3x−1.2x 2
= 8.4x−2là
Câu 124. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Trang 10Câu 125. Hàm số f có nguyên hàm trên K nếu
C f (x) có giá trị nhỏ nhất trên K D f (x) xác định trên K.
Câu 126. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 127. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tam giác.
B Hai khối chóp tứ giác.
C Một khối chóp tam giác, một khối chóp tứ giác.
D Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 128. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y
A Pmin= 18
√
11 − 29
21 B Pmin = 9
√
11+ 19
9 . C Pmin = 9
√
11 − 19
9 . D Pmin= 2
√
11 − 3
Câu 129. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 130. Khối đa diện đều loại {3; 5} có số đỉnh
HẾT