LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị của hàm số y = x − √ x + 2 x2 − 4 có tất cả bao nhiêu tiệm cận? A 2 B 0 C[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Đồ thị của hàm số y= x −
√
x+ 2
x2− 4 có tất cả bao nhiêu tiệm cận?
Câu 2 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình
A (x+ 1)2+ (y − 1)2+ (z − 2)2= 6 B (x+ 1)2+ (y − 1)2+ (z − 2)2 = √6
C (x − 1)2+ (y + 1)2+ (z + 2)2= 6 D (x+ 1)2+ (y − 1)2+ (z − 2)2 = 24
Câu 3 Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x3+ (m − 2)x2− 3mx+ m có điểm cực đại có hoành độ nhỏ hơn 1
Câu 4 Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục bé
bằng 2b (a > b > 0) để được một tấm tôn có dạng hình chữ nhật nội tiếp elíp Người ta gò tấm tôn hình chữ nhật thu được thành một hình trụ không có đáy như hình bên Tính thể tích lớn nhất có thể được của khối trụ thu được
A. 4a
2b
4a2b
2a2b
2a2b
3√3π.
Câu 5 Tứ diện OABC có OA= OB = OC = a và đôi một vuông góc Gọi M, N, P lần lượt là trung điểm
AB, BC, CA Thể tích tứ diện OMNP là
A. a
3
a3
a3
a3
12.
Câu 6 Cường độ một trận động đất M (richter) được cho bởi công thức M = log A − log A0, với A là biên độ rung chấn tối đa và A0là một biên độ chuẩn (hằng số) Đầu thế kỷ 20, một trận động đất ở San Francisco có cường độ 8,3 độ Richter Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh hơn gấp 4 lần Cường độ của trận động đất ở Nam Mỹ có kết quả gần đúng bằng:
Câu 7 Cho
4
R
−1
f(x)dx= 10 vàR4
1
f(x)dx= 8 TínhR1
−1
f(x)dx
Câu 8 Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y= x2+ 2x
x −1 là:
Câu 9 Số phức z= 2 − 3i có phần ảo là
Câu 10 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?
A y= −x4+ 2x2+ 2 B y= −x3+ 3x2+ 2 C y= x3− 3x2+ 2 D y= x4− 2x2+ 2
Câu 11 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là
A x= 2 + 2ty = −3tz = −1 + t B x= −2 + 2ty = −3tz = 1 + t
C x= −2 + 4ty = −6tz = 1 + 2t D x= 4 + 2ty = −3tz = 2 + t
Câu 12 Tìm nguyên hàm của hàm số f (x)= cos 3x
Trang 2C.R cos 3xdx= −sin 3x
Câu 13 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là
A (−∞; −3] ∪ [3; +∞) B (0; 3] C [−3; 3] D (−∞; 3].
Câu 14 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt
phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD
Câu 15 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho
3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất
A M(−3
4;
1
3
4;
3
3
4;
1
3
4;
1
2; −1).
Câu 16 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M
Câu 17 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương
trình là:
Câu 18 Cho hàm số y= f (x) có đạo hàm f′
(x) = (x − 2)2
(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 19 Phần ảo của số phức z= 2 − 3i là
Câu 20 Cho hàm số f (x)= cos x + x Khẳng định nào dưới đây đúng?
A.R f(x)dx= sin x + x2+ C B. R f(x)dx= − sin x + x 2
2 + C
C.R f(x)dx= sin x + x2
Câu 21 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên) Thể tích khối chóp đã cho bằng
Câu 22 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A ln3
3 D ln6a2
Câu 23 Xét các số phức z thỏa mãnz2− 3 − 4i= 2|z| Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z| Giá trị của M2+ m2bằng
Câu 24 Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x)= m có ba nghiệm thực phân biệt?
Câu 25 Cho khối lăng trụ đứng ABC · A′B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC)bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
A.
√
2
√ 2
√ 2
4 a3
Câu 26 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= −1
x2 B F′(x)= 1
′(x)= lnx D F′(x)= 2
x2
Câu 27 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
A. 2
Trang 3Câu 28 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1
2 Giá trị của u3bằng
A. 1
1
7
2.
Câu 29 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 30 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 31 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 32 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 33 NếuR−14 f(x)= 2 và R4
−1g(x)= 3 thì R4
−1[ f (x)+ g(x)] bằng
Câu 34 Cho hàm số y= x+ 1
3 − x Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
Câu 35 Cho hàm số y= f (x) có bảng biến thiên như sau:
x
y′ y
−2
−∞
+∞
−2
Đồ thị hàm số y= f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
Câu 36 Hình đa diện dưới đây có bao nhiêu cạnh?
Câu 37 Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc nhau và OA= OB = OC = 1 Tính thể tích V của khối tứ diện OABC
A V = 1
2.
Câu 38 Cho hàm số y = f (x) liên tục trên R và lim
x→ +∞y= 3 Trong các khẳng định sau, khẳng định nào luôn đúng?
A Đường thẳng y= 3 là một tiệm cận đứng của đồ thị hàm số y = f (x)
B Đường thẳng x= 3 là một tiệm cận ngang của đồ thị hàm số y = f (x)
C Đường thẳng x= 3 là một tiệm cận đứng của đồ thị hàm số y = f (x)
D Đường thẳng y= 3 là một tiệm cận ngang của đồ thị hàm số y = f (x)
Trang 4Câu 39 Tìm giá trị nhỏ nhất của hàm số f (x)= 2x3− 3x2− 12x+ 10 trên đoạn [−3; 3].
Câu 40 Cho hàm số y= x+ 1
x −1 có đồ thị là (C) và đường thẳng d có phương trình y= 5 − x Tìm số giao điểm của (C) và d
Câu 41 Cho hàm số y= 2x − 3
−x+ 2 Trong các khẳng định sau, khẳng định nào đúng?
A Hàm số đồng biến trên tập xác định của nó B Hàm số đồng biến trên khoảng (2;+∞)
C Hàm số đồng biến trên khoảng (−2;+∞) D Hàm số đồng biến trên khoảng (−2; 2).
Câu 42 Điểm cực đại của đồ thị hàm số y= x4− 2x2+ 3 là
Câu 43 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
32.
Câu 44 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. 3a
√
6
a
√ 15
3a√30
3a
√ 6
Câu 45 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = √ 1
x2− 1 ln 4
(x2− 1) ln 4. C y
(x2− 1)log4e. D y
2(x2− 1) ln 4.
Câu 46 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau
A P = 26abc B P = 2abc C P= 2a +2b+3c. D P= 2a +b+c.
Câu 47 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 500π
√
3
250π√3
125π√3
400π√3
Câu 48 Đồ thị hàm số y= 2x −
√
x2+ 3
x2− 1 có số đường tiệm cận đứng là:
Câu 49 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
Câu 50 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox
33π
32π
5 .
Trang 5HẾT