LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một sinh viên A trong thời gian 4 năm học đại học đã vay ngân hàng mỗi năm 10 tri[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Một sinh viên A trong thời gian 4 năm học đại học đã vay ngân hàng mỗi năm 10 triệu đồng với
lãi suất 3
A 46.538667 đồng B 45.188.656 đồng C 48.621.980 đồng D 43.091.358 đồng Câu 2 Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục bé
bằng 2b (a > b > 0) để được một tấm tôn có dạng hình chữ nhật nội tiếp elíp Người ta gò tấm tôn hình chữ nhật thu được thành một hình trụ không có đáy như hình bên Tính thể tích lớn nhất có thể được của khối trụ thu được
A. 4a
2b
4a2b
2a2b
2a2b
3√3π.
Câu 3 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường
tròn nội tiếp tam giác ABC bằng
Câu 4 Cho hình chóp đều S ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC
Biết góc giữa MN và mặt phẳng (ABCD) bằng 60o Tính sin của góc giữa MN và mặt phẳng (S BD)
A.
√
3
√ 5
2
√ 10
5 .
Câu 5 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0
Câu 6 Một thùng đựng nước có dạng hình trụ có chiều cao h và bán kính đáy bằng R Khi đặt thùng
nước nằm ngang như hình 1 thì khoảng cách từ trục hình trụ tới mặt nước bằng R
√ 3
2 (mặt nước thấp hơn trục của hình trụ) Khi đặt thùng nước thẳng đứng như hình 2 thì chiều cao của mực nước trong thùng là h1 Tính tỉ số h1
h
A. 2π − 3
√
3
π − √3
√ 3
2π − √3
Câu 7 Cho hàm số y= 5x 2 −3x Tính y′
A y′= (2x − 3)5x 2 −3xln 5 B y′ = (x2− 3x)5x 2 −3xln 5
Câu 8 Tập nghiệm của bất phương trình log4(3x− 1).log 1
4
3x− 1
3
4 là:
Câu 9 Cho số phức z= a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −
z
i= 0 Tính S = 2a + 3b
Câu 10 Biết
3 R
2
f(x)dx= 3 vàR3
2
g(x)dx= 1 Khi đóR3
2 [ f (x)+ g(x)]dx bằng
Câu 11 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (−2; 3; 4) B.→−n = (−2; 3; 1) C.→−n = (2; −3; 4) D.→−n = (2; 3; −4)
Trang 2Câu 12 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt
A −4 < m < −3 B −4 < m ≤ −3 C m > −4 D −4 ≤ m < −3.
Câu 13 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?
5 .
Câu 14 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là
A (−∞; 3] B (−∞; −3] ∪ [3; +∞) C (0; 3] D [−3; 3].
Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
A −x+ 2y + 2z + 4 = 0 B x+ 2y + 2z + 8 = 0
C 3x − 4y+ 6z + 34 = 0 D x − 2y − 2z − 4= 0
Câu 16 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(2; −6; 4) B M(5; 5; 0) C M(−2; −6; 4) D M(−2; 6; −4).
Câu 17 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 18 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên) Thể tích khối chóp đã cho bằng
Câu 19 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
A. 4
7
Câu 20 Trong không gian Oxyz, cho đường thẳng d : x−12 = y−2
−1 = z +3
−2 Điểm nào dưới đây thuộc d?
A N(2; 1; 2) B M(2; −1; −2) C P(1; 2; 3) D Q(1; 2; −3).
Câu 21 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 22 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3x2+ y2+ x + log2
x2+ y2
≤ log3x+ log2
x2+ y2+ 24x
?
Câu 23 Cho cấp số nhân (un)với u1= 2 và công bội q = 1
2 Giá trị của u3 bằng
A. 1
4
Câu 24 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 25 NếuR−14 f(x)dx= 2 và R4
−1g(x)dx= 3 thì R4
−1[ f (x)+ g(x)]dx bằng
Câu 26 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2
0 f(2x) bằng
3
Trang 3Câu 27 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1
3x − 1 là đường thẳng có phương trình:
A y= −1
3.
Câu 28 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π
3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
A. 5
√
5 .
Câu 29 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; −2; 3) B (−1; 2; 3) C (1; 2; −3) D (−1; −2; −3).
Câu 30 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 31 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
2
3.
Câu 32 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
A. 1
4
9
18
35.
Câu 33 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 34 Trong các mệnh đề sau, mệnh đề nào đúng?
A Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.
B Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.
C Hai khối chóp có thể tích bằng nhau thì bằng nhau.
D Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.
Câu 35 Cho hàm số y= x+ 1
x −1 có đồ thị là (C) và đường thẳng d có phương trình y= 5 − x Tìm số giao điểm của (C) và d
Câu 36 Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
x
y′ y
2
+∞
−∞
2
A y= 2x+ 1
2x+ 3
x −1 .
Câu 37 Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
A y= −x3− 2x+ 3 B y= x −3
5 − x. C y= x4− 2x2+ 1 D y= −x2+ 3x + 5
Câu 38 Cho hàm số y= −x4− x2+ 1 Trong các khẳng định sau, khẳng định nào sai?
A Đồ thị hàm số không có tiệm cận B Đồ thị hàm số có một điểm cực đại.
C Đồ thị hàm số cắt trục tung tại điểm (0; 1) D Điểm cực tiểu của hàm số là (0; 1).
Trang 4Câu 39 Cho hàm số y= f (x) có bảng biến thiên như sau:
x
y′ y
−2
−∞
+∞
−2
Đồ thị hàm số y= f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
Câu 40 Đồ thị hàm số y= −x3+ 3x2− 3x+ 2 có bao nhiêu điểm cực trị?
Câu 41 Cho hàm số y= 2x − 3
−x+ 2 Trong các khẳng định sau, khẳng định nào đúng?
A Hàm số đồng biến trên khoảng (2;+∞) B Hàm số đồng biến trên khoảng (−2;+∞)
C Hàm số đồng biến trên tập xác định của nó D Hàm số đồng biến trên khoảng (−2; 2).
Câu 42 Cho hàm số y= x+ 1
3 − x Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
Câu 43 Đồ thị hàm số y= 2x −
√
x2+ 3
x2− 1 có số đường tiệm cận đứng là:
Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0
A (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 3
C (x − 1)2+ (y + 2)2+ (z − 4)2 = 1 D (x − 1)2+ (y − 2)2+ (z − 4)2= 2
Câu 45 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x
sin x+ 2 cos x và F(−
π
2)= π Khi đó giá trị F(0) bằng:
A. 1
4ln 2+ 3π
6π
1
5ln 2+ 6π
5 . D ln 2+ 6π
5 .
Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên
đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M
A M(5
3;
11
3 ;
17
4
3;
10
3 ;
16
7
3;
10
3 ;
31
2
3;
7
3;
21
3 ).
Câu 47 Cho bất phương trình 3
√ 2(x−1)+1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng
A Bất phương trình đúng với mọi x ∈ (4;+∞)
B Bất phương trình vô nghiệm.
C Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
D Bất phương trình đúng với mọi x ∈ [ 1; 3].
Câu 48 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3
√ 2
2 Giả sử phương trình mặt phẳng (P) có dạng
ax+ by + cz + 2 = 0 Tính giá trị abc
Câu 49 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Trang 5Câu 50 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
12.
HẾT