1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi tham khảo môn toán (509)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 - 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 123,24 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Họ nguyên hàm của hàm số y = (x − 1)ex là A xex−1 +C B (x − 1)ex +C C (x − 2)ex +[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Họ nguyên hàm của hàm số y= (x − 1)ex là:

A xex−1+ C B (x − 1)ex+ C C (x − 2)ex+ C D xex+ C

Câu 2 Cho log2b= 3, log2c= −4 Hãy tính log2(b2c)

Câu 3 Lăng trụ ABC.A′B′C′có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A′lên (ABC) là trung điểm của BC Góc giữa cạnh bên và mặt phẳng đáy là 600 Khoảng cách từ C′ đến mp (ABB′

A′) là

A. 3a

10

3a√13

a√3

3a√13

26 .

Câu 4 Cho

4

R

−1

f(x)dx= 10 vàR4

1

f(x)dx= 8 TínhR1

−1

f(x)dx

Câu 5 Đồ thị như hình bên là đồ thị của hàm số nào?

A y= −2x+ 3

2x − 1

x+ 1 .

Câu 6 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác

trong góc A của tam giác ABC cắt mặt phẳng (P) : x+ y + z − 6 = 0 tại điểm nào trong các điểm sau đây:

A (1; −2; 7) B (−2; 2; 6) C (−2; 3; 5) D (4; −6; 8).

Câu 7 Một thùng đựng nước có dạng hình trụ có chiều cao h và bán kính đáy bằng R Khi đặt thùng

nước nằm ngang như hình 1 thì khoảng cách từ trục hình trụ tới mặt nước bằng R

√ 3

2 (mặt nước thấp hơn trục của hình trụ) Khi đặt thùng nước thẳng đứng như hình 2 thì chiều cao của mực nước trong thùng là

h1 Tính tỉ số h1

h

A. 2π − 3

3

π − √3

2π − √3

√ 3

4 .

Câu 8 Biết logab= 2, logac= 3 với a, b, c > 0; a , 1 Khi đó giá trị của loga(a

2√3

b

c ) bằng

A −1

2

Câu 9 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?

A y= x4− 2x2+ 2 B y= −x4+ 2x2+ 2 C y= x3− 3x2+ 2 D y= −x3+ 3x2+ 2

Câu 10 Cho cấp số nhân (un) với u1 = −1

2; u7 = −32 Tìm q?

Câu 11 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn

z+ 4 − 8i

= 2√5

là đường tròn có phương trình:

A (x+ 4)2+ (y − 8)2 = 2√5 B (x+ 4)2+ (y − 8)2= 20

C (x − 4)2+ (y + 8)2 = 2√5 D (x − 4)2+ (y + 8)2= 20

Trang 2

Câu 12 Đồ thị hàm số y= x+ 1

x −2 (C) có các đường tiệm cận là

A y= 1 và x = 2 B y= 2 và x = 1 C y= 1 và x = −1 D y= −1 và x = 2

Câu 13 Số phức z= 2 − 3i có phần ảo là

Câu 14 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng

Câu 15 Cho số phức z= a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −

z

i= 0 Tính S = 2a + 3b

Câu 16 Cho hàm số y= f (x) có bảng biến thiên như sau :

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 17 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n3 = (1; 1; 1) B.→−n2 = (1; −1; 1) C.→−n1 = (−1; 1; 1) D.→−n4 = (1; 1; −1)

Câu 18 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′

(x) bằng

A. 1

2

Câu 19 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R02 f(2x)dx bằng

Câu 20 Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x)= m có ba nghiệm thực phân biệt?

Câu 21 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−22 = y−1

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

Câu 22 Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

Câu 23 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

Câu 24 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

Câu 25 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

Câu 26 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 27 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

A. 5

24

Trang 3

Câu 28 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16π

16

16π

16

9 .

Câu 29 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1

2 Giá trị của u3bằng

A. 7

1

1

2.

Câu 30 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?

Câu 31 Cho hàm số y = f (x) có đạo hàm f′(x)= (x − 2)2

(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 32 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và

S A= 3 (tham khảo hình bên)

Thể tích khối chóp đã cho bằng

Câu 33 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n4= (1; 1; −1) B.→−n3 = (1; 1; 1) C.→−n2 = (1; −1; 1) D.→−n1 = (−1; 1; 1)

Câu 34 Cho hàm số y= 2x − 3

−x+ 2 Trong các khẳng định sau, khẳng định nào đúng?

A Hàm số đồng biến trên khoảng (−2; 2) B Hàm số đồng biến trên khoảng (2;+∞)

C Hàm số đồng biến trên khoảng (−2;+∞) D Hàm số đồng biến trên tập xác định của nó Câu 35 Cho hàm số y= f (x) có bảng biến thiên như sau:

x

y′ y

−2

−∞

+∞

−2

Đồ thị hàm số y= f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

Câu 36 Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?

A y= −x3− 2x+ 3 B y= −x2+ 3x + 5 C y= x −3

5 − x. D y= x4− 2x2+ 1

Câu 37 Hình đa diện dưới đây có bao nhiêu cạnh?

Câu 38 Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc nhau và OA= OB = OC = 1 Tính thể tích V của khối tứ diện OABC

3.

Trang 4

Câu 39 Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam

giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt ”?

A Khối bát diện đều B Khối mười hai mặt đều.

Câu 40 Xét hàm số f (x) = −x4+ 2x2+ 3 trên đoạn [0; 2] Trong các khẳng định sau, khẳng định nào

sai?

A Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.

B Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x= 0

C Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.

D Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x= 1

Câu 41 Cho hình lăng trụ đứng ABC.A′B′C′ có AA′ = 3a, tam giác ABC vuông cân tại A và BC = 2a Tính thể tích V của khối lăng trụ ABC.A′

B′C′

Câu 42 Điểm cực đại của đồ thị hàm số y= x4− 2x2+ 3 là

Câu 43 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Câu 44 Chọn mệnh đề đúng trong các mệnh đề sau:

A.R 5xdx=5x+ C B. R e2xdx =e2x

2 + C

dx = (2x+ 1)3

Câu 45 Cho bất phương trình 3

A Bất phương trình đúng với mọi x ∈ [ 1; 3].

B Bất phương trình đúng với mọi x ∈ (4;+∞)

C Bất phương trình vô nghiệm.

D Bất phương trình có nghiệm thuộc khoảng (−∞; 1).

Câu 46 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox

A. 33π

32π

31π

5 .

Câu 47 Chọn mệnh đề đúng trong các mệnh đề sau:

A Nếu a > 0 thì ax = ay

⇔ x= y B Nếu a < 1 thì ax > ay

⇔ x< y

C Nếu a > 1 thì ax > ay ⇔ x> y D Nếu a > 0 thì ax > ay ⇔ x< y

Câu 48 Hàm số nào trong các hàm số sau đồng biến trên R.

C y= 4x+ 1

Câu 49 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng

(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C

A. a

15

3a√30

3a√6

3a√6

Câu 50 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

12.

Trang 5

HẾT

Ngày đăng: 10/04/2023, 15:15

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm