TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề s[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx B.
Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx
C.
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 D.
Z
f(x)g(x)dx=Z f(x)dx
Z g(x)dx
Câu 2. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
2.
C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 0
Câu 3. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB= a√2 và BC = a Cạnh bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
√
58
3a
3a√38
a√38
29 .
Câu 4. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
A. 2
3.
Câu 5. Tìm giá trị nhỏ nhất của hàm số y= (x2
− 2x+ 3)2
− 7
Câu 6. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 7. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A 2
√
√ 13
√
√ 2
Câu 8 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
B.
Z
u0(x)
u(x)dx= log |u(x)| + C
C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
Câu 9. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 10. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
6.
Trang 2Câu 11. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 12. [2] Tổng các nghiệm của phương trình 3x−1.2x2 = 8.4x−2là
Câu 13. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
√
√ 2
√ 2
Câu 14. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là
A. C
20
50.(3)20
40
50.(3)10
10
50.(3)40
20
50.(3)30
450
Câu 15. Tính limcos n+ sin n
n2+ 1
Câu 16. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 17. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 18. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
2.
Câu 19. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 20. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
A 3
√
√
Câu 21. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 22. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 23. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 24. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
A. 1
1
9
2
5.
Trang 3Câu 25. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 26. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
6
a3√ 3
a3√ 3
2a3√ 6
9 .
Câu 27. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x) − g(x)]= a − b B lim
x→ +∞
f(x) g(x) = a
b.
C lim
x→ +∞[ f (x)+ g(x)] = a + b D lim
x→ +∞[ f (x)g(x)]= ab
Câu 28. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
C lim
x→a + f(x)= lim
x→a − f(x)= +∞
Câu 29. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 30. Cho
Z 1
0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
1
4.
Câu 31. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 18
√
11 − 29
21 B Pmin = 2
√
11 − 3
3 . C Pmin = 9
√
11+ 19
9 . D Pmin= 9
√
11 − 19
Câu 32. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 33. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 34. Tính lim
x→ +∞
x −2
x+ 3
3.
Câu 35. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 36 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aα+β= aα.aβ
α
aβ = aα C aαbα = (ab)α
D aαβ = (aα
)β
Câu 37 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
Trang 45 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 20 triệu đồng B 2, 25 triệu đồng C 3, 03 triệu đồng D 2, 22 triệu đồng.
Câu 38. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 39 Phát biểu nào sau đây là sai?
nk = 0 với k > 1
C lim un= c (Với un = c là hằng số) D lim √1
n = 0
Câu 40. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A 6
√
√ 3
14√3
√ 3
Câu 41. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
A. 1
1
1
8.
Câu 42. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 43. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
A. 7
-2
Câu 44. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
Câu 45. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?
3
2.
Câu 46. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 47. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x
1 = y
1 = z −1
x −2
2 = y −2
3 = z −3
4 .
C. x −2
2 = y+ 2
2 = z −3
x
2 = y −2
3 = z −3
−1 .
Câu 48. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −1
2;+∞
!
2;+∞
!
2
!
2
!
Câu 49. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2 (e) là:
A. 8
1
8
1
9.
Trang 5Câu 50. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là
√
2, phần ảo là 1 −
√
√
2, phần ảo là −
√ 3
C Phần thực là
√
2 − 1, phần ảo là
√
√
2 − 1, phần ảo là −
√ 3
Câu 51. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 52. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 53. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 54 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
Câu 55. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 1
0 = 2x ln x C y0 = 1
2x ln x. D y
0 = 2x ln 2
Câu 56. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 5 đỉnh, 9 cạnh, 6 mặt.
Câu 57. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
A. 9
11
Câu 58. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
5.
Câu 59. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = ey+ 1 C xy0 = −ey
− 1 D xy0 = ey
− 1
Câu 60. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 61. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 62. Dãy số nào sau đây có giới hạn là 0?
A un= 1 − 2n
5n+ n2 B un = n2− 3n
n2 C un = n2+ n + 1
(n+ 1)2 D un = n2− 2
5n − 3n2
Câu 63. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3√ 3
a3√ 6
a3√ 6
48 .
Câu 64. Khối đa diện đều loại {3; 3} có số cạnh
Câu 65. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 66. Giá trị của lim
x→1(3x2− 2x+ 1)
Trang 6Câu 67. Cho hàm số y= x3+ 3x2
Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
B Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
C Hàm số nghịch biến trên khoảng (−2; 1).
D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 68. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±√2 B m= ±3 C m= ±√3 D m= ±1
Câu 69. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
√ 2
a
√ 2
√ 3
Câu 70. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {0} B. D = (0; +∞) C. D = R \ {1} D. D = R
Câu 71. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 72. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 6 cạnh, 4 mặt B 6 đỉnh, 6 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 4 đỉnh, 8 cạnh, 4 mặt.
Câu 73. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 ≤ m ≤ 3
3
9
Câu 74. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 75. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 76. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = (1, 01)3
(1, 01)3− 1 triệu. B m = 100.1, 03
3 triệu.
C m = 120.(1, 12)3
(1, 12)3− 1 triệu. D m = 100.(1, 01)3
3 triệu.
Câu 77. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 78. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?
Câu 79. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3√2
a3√6
a3√3
48 .
Trang 7Câu 80. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên đúng B Chỉ có (I) đúng C Cả hai câu trên sai D Chỉ có (II) đúng.
Câu 81. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 82. Khối đa diện đều loại {5; 3} có số mặt
Câu 83 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
B Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
D Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
Câu 84. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Câu 85. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 86. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A −1
1
Câu 87. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = R \ {1; 2} B. D = (−2; 1) C. D = [2; 1] D. D = R
Câu 88. Khối đa diện đều loại {4; 3} có số mặt
Câu 89. Tính lim n −1
n2+ 2
Câu 90. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 91 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx
!0
Z
k f(x)dx= kZ f(x)dx, k là hằng số
C.
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C D. Z f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C
Câu 92. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Trang 8Câu 93. Cho hàm số y= −x3+ 3x2
− 4 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (0; 2) B Hàm số nghịch biến trên khoảng (0; 2).
C Hàm số đồng biến trên khoảng (0;+∞) D Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 94. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 95. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 96. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 97. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 98. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±1 B m= ±√2 C m= ±√3 D m= ±3
Câu 99. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 100. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3
a3
√ 15
a3
√ 5
25 .
Câu 101. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tam giác.
B Một hình chóp tứ giác và một hình chóp ngũ giác.
C Một hình chóp tam giác và một hình chóp tứ giác.
D Hai hình chóp tứ giác.
Câu 102. [1] Phương trình log3(1 − x)= 2 có nghiệm
Câu 103. Hàm số nào sau đây không có cực trị
A y = x3
− 3x B y= x4
− 2x+ 1 C y= x −2
2x+ 1. D y= x +
1
x.
Câu 104. Tính lim
x→2
x+ 2
x bằng?
Câu 105. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3
a3√3
a3√3
a3√3
12 .
Trang 9Câu 106. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Câu 107. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 108. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
√ 3
3
√ 3
4 .
Câu 109. Tính giới hạn lim2n+ 1
3n+ 2
A. 2
1
3
2.
Câu 110. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm
Ađến đường thẳng BD0bằng
√
a2+ c2
√
a2+ b2+ c2 B. a
√
b2+ c2
√
a2+ b2+ c2 C. abc
√
b2+ c2
√
a2+ b2+ c2 D. c
√
a2+ b2
√
a2+ b2+ c2
Câu 111. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là
3; 0; 0
!
3; 0; 0
!
3; 0; 0
!
Câu 112. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 113. Khối đa diện đều loại {3; 5} có số cạnh
Câu 114. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 115 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
Trang 10(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 116. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 117. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 118. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 1
2
2
3.
Câu 119. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 120. [4-1212d] Cho hai hàm số y= x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y= |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 121. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3√
3
a3
3√ 3
3 .
Câu 122. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của
P= xy + x + 2y + 17
Câu 123. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m > 1
1
1
1
4.
Câu 124. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3
3√ 3
a3
√ 3
2 .
Câu 125. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 126. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 127. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 128. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?
Câu 129. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 4a
3√
3
a3
2a3√3
a3
6 .