1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (797)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 4
Dung lượng 124,42 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB =[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD

A. V

V

V

V

3.

Câu 2 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A (7

4; 2]S[22;+∞) B [7

4;+∞)

Câu 3 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′

A. a

3

a√2

a√3

√ 3

Câu 4 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung

điểm I của đoạn thẳng AB

A I(0; 1; 2) B I(0; 1; −2) C I(0; −1; 2) D I(1; 1; 2).

Câu 5 Biết

5

R

1

dx 2x − 1 = ln T Giá trị của T là:

Câu 6 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,

I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)

√ 5

a

√ 5

a

√ 15

Câu 7 Đạo hàm của hàm số y= log√

2

3x − 1

là:

A y′= 2

3x − 1

ln 2

(3x − 1) ln 2. C y

(3x − 1) ln 2. D y

3x − 1

ln 2

Câu 8 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga 2b − log√

ba3

A. m

m2− 12

4m2− 3

m2− 12

Câu 9 Nếu

6

R

1

f(x)= 2 vàR6

1

g(x)= −4 thìR6

1

( f (x)+ g(x)) bằng

Câu 10 Cho hàm số y = f (x) xác định trên tập R và có f′

(x) = x2− 5x+ 4 Khẳng định nào sau đây đúng?

A Hàm số đã cho nghịch biến trên khoảng (1; 4).

B Hàm số đã cho đồng biến trên khoảng (−∞; 3).

C Hàm số đã cho nghịch biến trên khoảng (3;+∞)

D Hàm số đã cho đồng biến trên khoảng (1; 4).

Trang 2

Câu 11 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng

Câu 12 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2

d2 : x −4

−2 Gọi mặt phẳng (P) là chứa d1 và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng

2

3

5.

Câu 13 Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât Hoi co bao nhiêu cach phân công khac

nhau

Câu 14 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn

z1

2

+

z2

2

= 5

Câu 15 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là

Câu 16 Tính đạo hàm của hàm số y= 5x

A y′ = 5x

ln 5 D y′ = x.5x−1

Câu 17 Biết z= 1 + 2i là một nghiệm phức của phương trình z2+ (m − 1)z + m − 1 = 0 (m là tham số phức) Khi đó phần ảo của m bằng bao nhiêu?

A −3

7

7

3

4.

Câu 18 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?

A z2+ (1 + 4i)z − 9 + 7i = 0 B z2− (5 − 2i)z+ 9 − 7i = 0

C z2+ (5 − 2i)z − 9 + 7i = 0 D z2− (1+ 4i)z + 9 − 7i = 0

Câu 19 Biết z = 1 − 3i là một nghiệm của phương trình z2+ az + b = 0 ( với a, b ∈ R ) Khi đó hiệu

a − bbằng

Câu 20 Căn bậc hai của -4 trong tập số phức là.

Câu 21 Gọi z1, z2, z3là ba nghiệm phức của phương trình z3−z2+2 = 0 Khi đó tổngP = |z1+z2+z3+2−3i| bằng bao nhiêu?

Câu 22 Tất cả các căn bậc hai của số phức z= 15 − 8i là:

A 4+ i và −4 + i B 4 − i và −4+ i C 5 − 2i và −5+ 2i D 4 − i và 2+ 3i

Câu 23 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức

có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?

A |w|= 5 B |w|= √73 C |w|= √5 D |w|= 3√5

Câu 24 Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?

Câu 25 Biết z0 là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 20 = 0 Trên mặt phẳng tọa

độ, điểm nào dưới đây là điểm biểu diễn của số phức w= (1 + i)z0− 2z0 ?

Trang 3

Câu 26 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′

(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′(x) bằng

A. 1

5

4

1

4.

Câu 27 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n3= (1; 1; 1) B.→−n4 = (1; 1; −1) C.→−n2 = (1; −1; 1) D.→−n1 = (−1; 1; 1)

Câu 28 Có bao nhiêu số nguyên x thỏa mãn log3x

343 < log7x2− 16

Câu 29 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

A ln3

3.

Câu 30 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng

3.

Câu 31 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 32 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?

Câu 33 Trong không gian Oxyz, cho đường thẳng d : x −1

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A M(2; −1; −2) B Q(1; 2; −3) C N(2; 1; 2) D P(1; 2; 3).

Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P= (|z| − 4)2 B P= (|z| − 2)2 C P =

|z|2− 42 D P =

|z|2− 22

Câu 35 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 4 B |z|= 1

Câu 36 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 37 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|

Câu 38 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là

Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Trang 4

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 41 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 42 Cho a, b, c là các số thực và z= −1

2 +

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

Câu 43 Cho số phức z= (1 + i)2

(1+ 2i) Số phức z có phần ảo là

Câu 44 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?

A.

c

→ a

= √2 D.→−b ⊥→−a

Câu 45 Cho hàm số f (x) Biết f (0)= 4 và f′(x)= 2 sin2x+ 1, ∀x ∈ R, khi đó

π 4 R

0

f(x) bằng

A. π2+ 16π − 4

16

Câu 46 Đồ thị hàm số y= x+ 1

x −2 (C) có các đường tiệm cận là

A y= 1 và x = 2 B y= 2 và x = 1 C y= −1 và x = 2 D y= 1 và x = −1

Câu 47 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1

1 = z −2

1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox

A (P) : x − 2z + 5 = 0 B (P) : x − 2y + 1 = 0 C (P) : y − z + 2 = 0 D (P) : y + z − 1 = 0.

Câu 48 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3

2 chỉ có cực tiểu mà không có cực đại

A m < −1 B m > 1 C −1 ≤ m < 0 D −1 ≤ m ≤ 0.

Câu 49 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?

Câu 50 Cho hàm số y= f (x) có bảng biến thiên như sau :

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

HẾT

Ngày đăng: 10/04/2023, 15:02