1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (803)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 4
Dung lượng 123,81 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a3 6 Tìm gó[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a

3

6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho

Câu 2 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

A ln(ab2)= ln a + 2 ln b B ln(ab2)= ln a + (ln b)2

b)= ln a

ln b.

Câu 3 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A [22;+∞) B (7

4; 2]S[22;+∞) C (7

4;+∞)

D [7

4; 2]S[22;+∞)

Câu 4 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?

A Có một tiệm cận ngang và một tiệm cận đứng .

B Không có tiệm cận ngang và có một tiệm cận đứng.

C Có một tiệm cận ngang và không có tiệm cận đứng.

D Không có tiệm cận.

Câu 5 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A −2 < m < 2 B m= 2 C −2 ≤ m ≤ 2 D 0 < m < 2.

Câu 6 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 7 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?

Câu 8 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung

A m < 1

3. B m < 0. C 0 < m <

1

3. D Không tồn tại m.

Câu 9 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?

A (P) đi qua tâm mặt cầu (S ) B (P) không cắt mặt cầu (S ).

C (P) cắt mặt cầu (S ) D (P) tiếp xúc mặt cầu (S ).

Câu 10 Cho số phức z1 = 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng

Câu 11 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng

x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1 = 4S2thì giá trị k thuộc khoảng nào sau đây?

A (3, 5; 3, 7)· B (3, 3; 3, 5)· C (3, 7; 3, 9)· D (3, 1; 3, 3)·.

Trang 2

Câu 12 Tính thể tích V của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2và trục hoành quanh trục Ox

A V = 22π

5.

Câu 13 Cho khối lăng trụ đứng ABC.A

B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng

√ 3

3 a Tính thể tích của khối lăng trụ ABC.A

B′C′

A. a

3√

2

a3

a3

a3√2

Câu 14 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) và N( 3; 2; −1) Đường thẳng

MN có phương trình tham số là

Câu 15 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn

z1

2

+

z2

2

= 5

Câu 16 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?

Câu 17 Căn bậc hai của -4 trong tập số phức là.

Câu 18 Tổng nghịch đảo các nghiệm của phương trình z4− z3− 2z2+6z−4 = 0 trên tập số phức bằng

A −3

1

1

3

2.

Câu 19 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?

A z2+ (5 − 2i)z − 9 + 7i = 0 B z2− (5 − 2i)z+ 9 − 7i = 0

C z2+ (1 + 4i)z − 9 + 7i = 0 D z2− (1+ 4i)z + 9 − 7i = 0

Câu 20 Tìm tất cả các giá trị thực của tham số m để phương trình mz2+ 2mz − 3(m − 1) = 0 không có nghiệm thực là

A 0 < m < 3

4. B m < 0 hoặc m >

3

4. C m ≥ 0. D 0 ≤ m <

3

4.

Câu 21 Biết z= 1 + 2i là một nghiệm phức của phương trình z2+ (m − 1)z + m − 1 = 0 (m là tham số phức) Khi đó phần ảo của m bằng bao nhiêu?

A. 3

7

3

7

4.

Câu 22 Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2+ bz + c = 0 (với

a, b ∈ R ) Khi đó tổng a + b + c bằng bao nhiêu?

Câu 23 Tất cả các căn bậc hai của số phức z= 15 − 8i là:

A 4 − i và −4+ i B 4 − i và 2+ 3i C 4+ i và −4 + i D 5 − 2i và −5+ 2i

Câu 24 Biết z0là nghiệm phức có phần ảo âm của phương trình z2− (3 − 2i)z+ 5 − i = 0

Khi đó tổng phần thực và phần ảo của z0là

Câu 25 Biết z là số phức thỏa mãn z2+ 3z + 4 = 0 Khi đó mô-đun của số phức w = z + 1 bằng bao nhiêu ?

A |w|= √2 B |w|= 2√2 C |w|= √3 D |w|= √5

Trang 3

Câu 26 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 27 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng

A. 1

3

Câu 28 NếuR2

0 f(x)= 4 thì R02[1

2f(x) − 2] bằng

Câu 29 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

A. 5

24

Câu 30 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 31 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

3πr2l

Câu 32 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+

y2+ 24x)?

Câu 33 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 35 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

3

2.

Câu 36 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và

z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|

A T = 2

97

√ 85

Câu 37 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 38 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

√ 2

1

2.

Trang 4

Câu 39 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1 + 1

z2 = 1

z1+ z2

Tính giá trị biểu thức P=

z1

z2

+

z2

z1

√ 2

1

2.

Câu 40 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M= |z + 1 − i| là

Câu 41 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A Phần thực của z là số âm B |z|= 1

C z là một số thực không dương D z là số thuần ảo.

Câu 42 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 5

2 < |z| < 7

2. B 2 < |z| <

5

3

2 < |z| < 2 D. 1

2 < |z| < 3

2.

Câu 43 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là

Câu 44 Cho hàm số y= f (x) có đạo hàm f′

(x)= x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng

Câu 45 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là

A (−∞; −3] ∪ [3; +∞) B [−3; 3] C (0; 3] D (−∞; 3].

Câu 46 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là

Câu 47 Tập nghiệm của bất phương trình log3(10 − 3x +1) ≥ 1 − x chứa mấy số nguyên.

Câu 48 Tìm đạo hàm của hàm số: y= (x2+ 1)

3 2

A. 3

2(2x)

1

2(x

2+ 1)

1

4x

−1

1

2

Câu 49 Trong các số phức z thỏa mãn

z − i

=

¯z − 2 − 3i

Hãy tìm z có môđun nhỏ nhất

A z= 27

5 + 6

5+ 27

5 −

6

5 −

27

5 i.

Câu 50 Tính đạo hàm của hàm số y= 2023x

A y′ = 2023x

ln 2023 B y′ = 2023x

ln x C y′ = x.2023x−1 D y′ = 2023x

HẾT

Ngày đăng: 10/04/2023, 15:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN