Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3 + x2 + mx −[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung
A m < 1
3. B 0 < m <
1
3. C m < 0. D Không tồn tại m.
Câu 2 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 3 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của
M trên mặt phẳng (Oxy)
A A(1; 2; 0) B A(1; 0; 3) C A(0; 0; 3) D A(0; 2; 3).
Câu 4 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)
Câu 5 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.
Tính thể tích của khối trụ
Câu 6 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20
Câu 7 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga 2b − log√
ba3
A. m
m2− 12
m2− 12
4m2− 3
Câu 8 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Câu 9 Đạo hàm của hàm số y= (2x + 1)−
1
3 trên tập xác định là
A −1
3(2x+ 1)−
4
1
3 ln(2x+ 1)
C 2(2x+ 1)−
1
3(2x+ 1)−
4
3
Câu 10 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 11 Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn
phương án dưới đây Hỏi hàm số đó là hàm số nào?
Câu 12 Cho hàm số y = f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng
Trang 2Câu 13 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng
Câu 14 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng
Câu 15 Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z Phần thực của z bằng
Câu 16 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2
−1 = x −1
A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là
A (2 ; −3 ; 1) B (8
3; −
2
3;
7
2
3; −
4
3;
5
10
2 ; −
4
3;
5
3).
Câu 17 Gọi z1, z2, z3là ba nghiệm phức của phương trình z3−z2+2 = 0 Khi đó tổngP = |z1+z2+z3+2−3i| bằng bao nhiêu?
Câu 18 Biết phương trình z2+ mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo Khi đó tham số thực
mgần giá trị nào nhất trong các giá trị sau?
Câu 19 Căn bậc hai của -4 trong tập số phức là.
A 2 hoặc -2 B không tồn tại C 2i hoặc -2i D 4i.
Câu 20 Biết z = 1 − 3i là một nghiệm của phương trình z2+ az + b = 0 ( với a, b ∈ R ) Khi đó hiệu
a − bbằng
Câu 21 Gọi z1, z2là hai nghiệm phức của phương trình 2(1+i)z2−4(2−i)z−5−3i= 0 TổngT = |z1|2+|z2|2
bằng bao nhiêu?
A T = 13
√ 13
Câu 22 Biết z= 1 + 2i là một nghiệm phức của phương trình z2+ (m − 1)z + m − 1 = 0 (m là tham số phức) Khi đó phần ảo của m bằng bao nhiêu?
A. 7
7
3
3
4.
Câu 23 Tổng nghịch đảo các nghiệm của phương trình z4− z3− 2z2+6z−4 = 0 trên tập số phức bằng
A −1
3
1
3
2.
Câu 24 Kí hiệu z1, z2, z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0 Tính tổng
T = |z1|+ |z2|+ |z3|+ |z4|
Câu 25 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?
A z2− (5 − 2i)z+ 9 − 7i = 0 B z2+ (1 + 4i)z − 9 + 7i = 0
C z2− (1+ 4i)z + 9 − 7i = 0 D z2+ (5 − 2i)z − 9 + 7i = 0
Câu 26 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1
3x − 1 là đường thẳng có phương trình:
A y= −1
3.
Câu 27 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 28 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
A. 8
Trang 3Câu 29 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= 2
x2 B F′(x)= lnx C F′(x)= −1
x2 D F′(x)= 1
x.
Câu 30 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 31 Xét các số phức z thỏa mãn
z2− 3 − 4i
= 2 z
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của
z
Giá trị của M2+ m2bằng
Câu 32 Phần ảo của số phức z= 2 − 3i là
Câu 33 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên)
Thể tích khối chóp đã cho bằng
Câu 34 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 35 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
A |A| ≤ 1 B |A| > 1 C |A| ≥ 1 D |A| < 1.
Câu 36 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
A |z|= 1
Câu 37 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 7
√ 2
√ 6
√ 5
√ 2
Câu 38 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
A a2+ b2+ c2− ab − bc − ca B a+ b + c
Câu 39 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1
+ 1
z2
= 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
A. √1
√
√ 2
Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 41 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
Trang 4A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8
3. B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 .
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1
Câu 42 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
A.
√
2
1
1
5.
Câu 43 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1
1 = z −2
1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox
A (P) : y − z + 2 = 0 B (P) : x − 2z + 5 = 0 C (P) : y + z − 1 = 0 D (P) : x − 2y + 1 = 0.
Câu 44 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
A 3x − 4y+ 6z + 34 = 0 B x − 2y − 2z − 4= 0
C −x+ 2y + 2z + 4 = 0 D x+ 2y + 2z + 8 = 0
Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(−2; −6; 4) B M(2; −6; 4) C M(5; 5; 0) D M(−2; 6; −4).
Câu 46 Biết F(x)= x2là một nguyên hàm của hàm số f (x) trên R Giá trị của
3
R
1
[1+ f (x)]dx bằng
32
3 .
Câu 47 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần
lượt được các hình tròn xoay có thể tích là 672π, 3136π
9408π
13 .Tính diện tích tam giác ABC.
Câu 48 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?
A.
−
→
c
−
→ a
= √2 C.→−b ⊥→−a D.→−b ⊥→−c
Câu 49 Tìm đạo hàm của hàm số: y= (x2+ 1)
3 2
A. 3
4x
−1
2(x
1
2 C 3x(x2+ 1)
1
2(2x)
1
2
Câu 50 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3
2 chỉ có cực tiểu mà không có cực đại
A −1 ≤ m < 0 B m < −1 C −1 ≤ m ≤ 0 D m > 1.
HẾT