1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (547)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 - 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 123,31 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳ[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x

A. 1

2

1

6.

Câu 2 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)

A f (−1)= −1 B f (−1)= −5 C f (−1)= 3 D f (−1)= −3

Câu 3 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; −3) B Hàm số nghịch biến trên khoảng (−3; 1).

C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số đồng biến trên khoảng (−3; 1).

Câu 4 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A m= 2 B 0 < m < 2 C −2 ≤ m ≤ 2 D −2 < m < 2.

Câu 5 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 6 Biết

5

R

1

dx 2x − 1 = ln T Giá trị của T là:

Câu 7 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?

A.R f(2x − 1)dx= 2F(x) − 1 + C B. R f(2x − 1)dx = 2F(2x − 1) + C

C.R f(2x − 1)dx= F(2x − 1) + C D.R f(2x − 1)dx = 1

2F(2x − 1)+ C

Câu 8 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20

Câu 9 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1

3x − 1 là đường thẳng có phương trình:

A y= −2

3.

Câu 10 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 11 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

24

5 .

Câu 12 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 13 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng

định nào dưới đây đúng?

Trang 2

Câu 14 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

A. 1

3πrl2

Câu 15 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16

16π

16π

16

9 .

Câu 16 NếuR02 f(x)= 4 thì R2

0 [1

2f(x) − 2] bằng

Câu 17 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= 5

34

√ 34

3 .

Câu 18 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực B Mô-đun của số phức z là số phức.

C Mô-đun của số phức z là số thực dương D Mô-đun của số phức z là số thực không âm.

Câu 19 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 20 Đẳng thức nào đúng trong các đẳng thức sau?

A (1+ i)2018= 21009 B (1+ i)2018 = −21009i C (1+ i)2018 = 21009i D (1+ i)2018 = −21009

Câu 21 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 22 Số phức z= 1+ i

1 − i

!2016

+ 1 − i

1+ i

!2018

bằng

Câu 23 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 24 Với mọi số phức z, ta có |z+ 1|2bằng

A z2+ 2z + 1 B z · z+ z + z + 1 C |z|2+ 2|z| + 1 D z+ z + 1

Câu 25 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?

A z · z = a2− b2 B z − z = 2a C z+ z = 2bi D |z2|= |z|2

Câu 26 Tích phân I = R2

0 (2x − 1) có giá trị bằng:

Câu 27 Tìm nguyên hàm I = R xcosxdx

C I = x2sinx

2 + C

Câu 28 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương

trình

A x − 2y+ 2z + 15 = 0 B x+ 2y + 2z + 15 = 0

C x − 2y+ 2z − 15 = 0 D x+ 2y + 2z − 15 = 0

Câu 29 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ

A (3; −1; −4) B (−3; −1; 4) C (3; 1; 4) D (−3; −1; −4).

Trang 3

Câu 30 Biết

1

R

0

3x − 1

x2+ 6x + 9 dx = 3ln

a

b −

5

6, trong đó a, b nguyên dương và

a

b là phân số tối giản Hãy tính ab

4.

Câu 31 Tìm nguyên hàm của hàm số f (x)= √ 1

2x+ 1.

A.R f(x)dx= √ 1

R

f(x)dx= 2√2x+ 1 + C

2

√ 2x+ 1 + C

Câu 32 Hàm số f (x) thoả mãn f

(x)= xxlà:

A (x − 1)x+ C B (x+ 1)x+ C C x2+ x+1

x+ 1 + C. D x2 x+ C.

Câu 33 Cho hàm số f (x) liên tục trên R vàR04 f(x)= 10, R4

3 f(x)= 4 Tích phân R3

0 f(x) bằng

Câu 34 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 10

√ 2

√ 6

√ 5

√ 2

3 .

Câu 35 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A. 1

2 < |z| < 3

3

1

2.

Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 37 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A z là một số thực không dương B z là số thuần ảo.

C Phần thực của z là số âm D |z|= 1

Câu 38 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 9

4;+∞

!

4;

5 4

!

2;

9 4

!

4

!

Câu 41 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Trang 4

Câu 42 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

√ 2

1

5.

Câu 43 Tìm tập xác định D của hàm số y=

r log23x+ 1

x −1

Câu 44 Đồ thị hàm số y= 2x −

x2+ 3

x2− 1 có số đường tiệm cận đứng là:

Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm

A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)

A 2x+ y − 4z + 1 = 0 B 2x+ y − 4z + 5 = 0

C −2x − y+ 4z − 8 = 0 D 2x+ y − 4z + 7 = 0

Câu 46 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox

A. 31π

32π

33π

5 .

Câu 47 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng

x= −1; x = 2

A. 23

29

27

25

4 .

Câu 48 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị F(0) bằng:

A ln 2+ 6π

1

5ln 2+ 6π

1

4ln 2+ 3π

2 .

Câu 49 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng

vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√

3 Tính thể tích khối chóp S ABC

A. a

3√

15

a3√15

a3√5

a3√15

Câu 50 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai

loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1

Trang 5

HẾT

Ngày đăng: 10/04/2023, 13:30

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm