TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho I = ∫ 3 0 x 4 + 2 √ x + 1 dx = a d + b ln 2 + c ln d,[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho I =
Z 3
0
x
4+ 2√x+ 1dx =
a
d+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị
P= a + b + c + d bằng?
Câu 2. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng
Câu 3. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3
a3√5
a3√15
5 .
Câu 4. Bát diện đều thuộc loại
Câu 5. [2-c] Cho hàm số f (x)= 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
Câu 6. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 7. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 8. Cho lăng trụ đứng ABC.A0B0C0 có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A. a
3√
6
2a3
√ 6
4a3
√ 6
3√ 6
Câu 9. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
4. B (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
4.
C (x − 3)2+ (y + 1)2+ (z + 3)2= 9
2+ (y − 1)2+ (z − 3)2= 9
4.
Câu 10. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 11. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Trang 2Câu 12. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Câu 13. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 14 Phát biểu nào sau đây là sai?
nk = 0
C lim1
Câu 15. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±1 B m= ±√3 C m= ±√2 D m= ±3
Câu 16. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
√ 3
Câu 17. Tính lim
x→2
x+ 2
x bằng?
Câu 18. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
A y = logπ
C y = log√
2x D y = logaxtrong đó a= √3 − 2
Câu 19. [1] Giá trị của biểu thức log √31
10 bằng
1
3.
Câu 20. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A −1
1
1
e2
Câu 21. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 3ac
3b+ 2ac
3b+ 3ac
c+ 1 .
Câu 22. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Một khối chóp tam giác, một khối chóp tứ giác.
B Hai khối chóp tam giác.
C Một khối chóp tam giác, một khối chóp ngữ giác.
D Hai khối chóp tứ giác.
Câu 23 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
D.
Z
u0(x)
u(x)dx= log |u(x)| + C
Trang 3Câu 24. Cho hàm số y= x3
− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số đồng biến trên khoảng (1; 2) B Hàm số nghịch biến trên khoảng (−∞; 0).
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng (0; 1).
Câu 25. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x −2
2 = y+ 2
2 = z −3
x
1 = y
1 = z −1
1 .
C. x −2
2 = y −2
3 = z −3
x
2 = y −2
3 = z −3
−1 .
Câu 26. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
A.
√
√
√ 3
Câu 27. Tính lim n −1
n2+ 2
Câu 28. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
5
a2√ 2
a2√ 7
11a2
32 .
Câu 29. Tính lim
x→ +∞
x −2
x+ 3
3.
Câu 30. [2] Đạo hàm của hàm số y = x ln x là
A y0 = ln x − 1 B y0 = 1 − ln x C y0 = x + ln x D y0 = 1 + ln x
Câu 31. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. a
√
57
2a√57
√
√ 57
17 .
Câu 32. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 33. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
A (+∞; −∞) B (−∞; 1] C [3;+∞) D [1;+∞)
Câu 34. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 35. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 36. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
b2+ c2
√
a2+ b2+ c2 B. c
√
a2+ b2
√
a2+ b2+ c2 C. b
√
a2+ c2
√
a2+ b2+ c2 D. a
√
b2+ c2
√
a2+ b2+ c2
Trang 4Câu 37. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối lập phương B Khối tứ diện đều C Khối bát diện đều D Khối 12 mặt đều.
Câu 38. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A −2 ≤ m ≤ −1 B (−∞; −2) ∪ (−1; +∞) C −2 < m < −1 D (−∞; −2] ∪ [−1;+∞)
Câu 39. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 40. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
Câu 41. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0
A A0(−3; 3; 1) B A0(−3; −3; −3) C A0(−3; −3; 3) D A0(−3; 3; 3)
Câu 42. Tìm giới hạn lim2n+ 1
n+ 1
Câu 43. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
2a
√ 57
a
√ 57
√ 57
Câu 44. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 45. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 46. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
2.
Câu 47. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 48. [1] Tập xác định của hàm số y= 2x−1là
A. D = (0; +∞) B. D = R \ {1} C. D = R D. D = R \ {0}
Câu 49. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A. 3
√ 3
1
2.
Câu 50. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh của khối chóp bằng 2n.
B Số mặt của khối chóp bằng 2n+1.
C Số mặt của khối chóp bằng số cạnh của khối chóp.
D Số đỉnh của khối chóp bằng 2n+ 1
Trang 5Câu 51. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 9
√
11 − 19
9 . B Pmin = 9
√
11+ 19
9 . C Pmin = 2
√
11 − 3
3 . D Pmin= 18
√
11 − 29
21 .
Câu 52. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
2
a3√3
a3√3
a3√3
6 .
Câu 53. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 54. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
√
38
3a
√ 58
a
√ 38
3a
29.
Câu 55. Khối chóp ngũ giác có số cạnh là
Câu 56. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3
√ 6
a3
√ 3
a3
√ 2
16 .
Câu 57. Tính giới hạn lim2n+ 1
3n+ 2
A. 2
3
1
2.
Câu 58. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A a
√
√ 6
a√6
a√6
6 .
Câu 59. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
A. 2
√
3
√ 3
Câu 60. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3√6
a3√6
a3√2
6 .
Câu 61. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 62. Khối đa diện đều loại {3; 4} có số cạnh
Trang 6Câu 63. Giá trị cực đại của hàm số y = x3
− 3x+ 4 là
Câu 64. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 65. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
2.
Câu 66. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 67. Tính lim 5
n+ 3
Câu 68. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
4 < m < 0 D m > −5
4.
Câu 69. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?
A. 3
9
Câu 70. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 71. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 72. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 73. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 74 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx
!0
Z
f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C
C.
Z
k f(x)dx= kZ f(x)dx, k là hằng số D.
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C
Câu 75. Hàm số y= x3
− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 76. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = a3
√
3
2 . B V = 3a3√
3 C V = 6a3 D V = 3a3
√ 3
2 .
Câu 77. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Trang 7Câu 78. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ log23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 79. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3√ 3
a3√ 6
a3√ 6
24 .
Câu 80. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab +1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
5
Câu 81 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
Z
dx = x + C, C là hằng số
C.
Z
1
xdx= ln |x| + C, C là hằng số D.
Z
xαdx= α + 1xα+1 + C, C là hằng số
Câu 82 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
Câu 83. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên sai B Chỉ có (II) đúng C Chỉ có (I) đúng D Cả hai câu trên đúng.
Câu 84. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 85. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
Câu 86. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ [a; b], ta có F0(x)= f (x)
B Với mọi x ∈ (a; b), ta có f0(x)= F(x)
C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Câu 87. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x
lần lượt là
A 2
√
√
2 và 3 D 2 và 2
√ 2
Câu 88. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
3√
3
a3√3
3 .
Trang 8Câu 89. [4] Cho lăng trụ ABC.A BC có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
3
√
√
√ 3
3 .
Câu 90. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 91. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 8
1
8
1
9.
Câu 92. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
3
2 e
π
√ 2
2 e
π
2e
π
3
Câu 93. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 94. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
2.
Câu 95. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Trục thực.
B Trục ảo.
C Hai đường phân giác y= x và y = −x của các góc tọa độ
D Đường phân giác góc phần tư thứ nhất.
Câu 96. Khối đa diện đều loại {4; 3} có số cạnh
Câu 97. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 98. Khối đa diện đều loại {3; 3} có số cạnh
Câu 99. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 3
3√
3√ 2
2 .
Câu 100. Dãy số nào sau đây có giới hạn khác 0?
A. √1
n+ 1
sin n
1
n.
Câu 101. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
Câu 102. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Trang 9Câu 103. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
3√
3√ 3
a3√3
6 .
Câu 104. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 105. Khối đa diện đều loại {5; 3} có số cạnh
Câu 106. Thể tích của khối lập phương có cạnh bằng a
√ 2
A V = a3√
3√ 2
√ 2
Câu 107. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1
2x3ln 10. C y
0 = 1 − 4 ln 2x 2x3ln 10 . D y
0 = 1 − 2 ln 2x
x3ln 10 .
Câu 108. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?
Câu 109. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 110. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u= (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= 1 + 7t
y= 1 + t
z= 1 + 5t
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
D.
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
Câu 111 Phát biểu nào sau đây là sai?
nk = 0 với k > 1
n = 0
Câu 112. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 113. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = ey
− 1
Câu 114. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
A. 2
3.
Trang 10Câu 115. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là
A. C
20
50.(3)20
20
50.(3)30
10
50.(3)40
40
50.(3)10
450
Câu 116. Khẳng định nào sau đây đúng?
A Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B Hình lăng trụ tứ giác đều là hình lập phương.
C Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D Hình lăng trụ đứng là hình lăng trụ đều.
Câu 117. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 118. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
Câu 119. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3
√ 3
a3
√ 3
a3
√ 3
6 .
Câu 120. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 121. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
a√2
a
a
3.
Câu 122. Khối đa diện đều loại {3; 5} có số mặt
Câu 123. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
√
√
Câu 124. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra