1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn thi thpt 1 (646)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt 1 (646)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 12
Dung lượng 152,56 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất? A Khối lập[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 2. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 3. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 4. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 5. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

2

a3√6

a3√3

a3√3

24 .

Câu 6. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey+ 1 B xy0 = −ey

− 1 D xy0 = ey+ 1

Câu 7. [2] Cho hàm số y= log3(3x + x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 8. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách giữa hai đường thẳng

BB0và AC0bằng

2

a2+ b2 B. √ ab

a2+ b2 C. √ 1

a2+ b2 D. ab

a2+ b2

Câu 9. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là

A. 1

1

9

2

5.

Câu 10. Dãy số nào sau đây có giới hạn khác 0?

A. sin n

n+ 1

1

1

n.

Câu 11. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?

2x

C y = logaxtrong đó a= √3 − 2 D y = logπ

4 x

Câu 12. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 13. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Trang 2

Câu 14. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

1

4.

Câu 15. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. 2a

57

a√57

a√57

√ 57

Câu 16. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 2a

3√

3

2a3

4a3

4a3√ 3

3 .

Câu 17. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Trục thực.

B Trục ảo.

C Đường phân giác góc phần tư thứ nhất.

D Hai đường phân giác y= x và y = −x của các góc tọa độ

Câu 18. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 − 2 ln 2x

x3ln 10 . C y

0 = 1 2x3ln 10. D y

0 = 1 − 2 log 2x

x3

Câu 19. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 20 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

Câu 21. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 2

5n − 3n2 B un = n2+ n + 1

(n+ 1)2 C un = 1 − 2n

5n+ n2 D un = n2− 3n

n2

Câu 22. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 23. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Bốn tứ diện đều và một hình chóp tam giác đều.

B Năm tứ diện đều.

C Năm hình chóp tam giác đều, không có tứ diện đều.

D Một tứ diện đều và bốn hình chóp tam giác đều.

Câu 24. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

58

3a√38

3a

a√38

29 .

Trang 3

Câu 25. Cho hàm số y= x3

− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng 1

3; 1

!

3

!

C Hàm số nghịch biến trên khoảng 1

3; 1

! D Hàm số nghịch biến trên khoảng (1;+∞)

Câu 26. Tính lim

x→2

x+ 2

x bằng?

Câu 27. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2

− 4M)2019

Câu 28. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2− 2; m= 1 B M = e2− 2; m = e−2+ 2

C M = e−2+ 2; m = 1 D M = e−2+ 1; m = 1

Câu 29. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 2

11 − 3

3 . B Pmin = 9

11+ 19

9 . C Pmin = 9

11 − 19

9 . D Pmin= 18

11 − 29

21 .

Câu 30. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3

3√ 3

a3√ 3

6 .

Câu 31. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 32. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

B Cả ba câu trên đều sai.

C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

D F(x)= G(x) trên khoảng (a; b)

Câu 33. Hàm số nào sau đây không có cực trị

A y = x4− 2x+ 1 B y= x −2

2x+ 1. C y= x +

1

x. D y= x3− 3x

Câu 34. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị lớn nhất trên K B f (x) xác định trên K.

C f (x) có giá trị nhỏ nhất trên K D f (x) liên tục trên K.

Câu 35. Tính lim 5

n+ 3

Câu 36. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

3

3

4.

Câu 37. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Trang 4

Câu 38. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

A lim un= 1

C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 1

Câu 39. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

D Với mọi x ∈ (a; b), ta có f0(x)= F(x)

Câu 40. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e + 3 B T = e + 1 C T = e + 2

e. D T = 4 + 2

e.

Câu 41. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 2016

2017

4035

2018.

Câu 42. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1

9

!x là

Câu 43. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 44. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 45. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (1; 0; 2) B ~u= (3; 4; −4) C ~u= (2; 2; −1) D ~u= (2; 1; 6)

Câu 46. Cho hàm số y= −x3+ 3x2

− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0; 2) B Hàm số nghịch biến trên khoảng (0; 2).

C Hàm số nghịch biến trên khoảng (−∞; 2) D Hàm số đồng biến trên khoảng (0;+∞)

Câu 47. Tính lim n −1

n2+ 2

Câu 48. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= − loga2 B log2a= 1

loga2. C log2a= loga2 D log2a= 1

log2a.

Câu 49. [2] Tập xác định của hàm số y= (x − 1)1

A. D = (−∞; 1) B. D = R C. D = R \ {1} D. D = (1; +∞)

Câu 50. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

26 .

Trang 5

Câu 51. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 52. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính

f(2)+ f (4)?

Câu 53 Phát biểu nào sau đây là sai?

nk = 0 với k > 1

C lim un= c (Với un = c là hằng số) D lim √1

n = 0

Câu 54. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A − 23

13

9

5

16.

Câu 55. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là

Câu 56. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 57. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối lập phương B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.

Câu 58. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 59. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Giảm đi n lần B Không thay đổi C Tăng lên n lần D Tăng lên (n − 1) lần.

Câu 60. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 61. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

√ 2

2 e

π

√ 3

2 e

π

2e

π

3

Câu 62. Khối đa diện đều loại {3; 4} có số mặt

Câu 63. Biểu thức nào sau đây không có nghĩa

Câu 64. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 65. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Trang 6

Câu 66. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 67 Hình nào trong các hình sau đây không là khối đa diện?

Câu 68. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 9 cạnh, 6 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.

Câu 69. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 70. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 71. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

√ 2

Câu 72. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x +3trên đoạn [0; 2] là

Câu 73. Giá trị cực đại của hàm số y = x3

− 3x+ 4 là

Câu 74. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A −1

1

1

3.

Câu 75. Hàm số y= −x3+ 3x2

− 1 đồng biến trên khoảng nào dưới đây?

Câu 76. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 B. ab

a2+ b2 C. √ 1

a2+ b2 D. √ ab

a2+ b2

Câu 77. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 78. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 79. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 80. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

√ 3

2 . C V = 3a3

√ 3

2 . D V = 3a3√

3

Câu 81. Thập nhị diện đều (12 mặt đều) thuộc loại

Trang 7

Câu 82. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3

3√ 3

a3

√ 3

9 .

Câu 83. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a√2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√2

a3√6

a3√6

18 .

Câu 84. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

√ 3

2 . D P= −1 − i

√ 3

Câu 85. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 86. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 87. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 88. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

Câu 89. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√3

a√6

a√6

2 .

Câu 90. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 91. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 92 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

Z

xαdx= xα+1

α + 1+ C, C là hằng số.

C.

Z

1

xdx= ln |x| + C, C là hằng số D.

Z

dx = x + C, C là hằng số

Câu 93. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 94. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. 2a

3√

3

4a3√3

a3

a3

6 .

Câu 95. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Trang 8

Câu 96. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 97. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m > 1

1

1

1

4.

Câu 98. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

6.

Câu 99. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)g(x)]= ab B lim

x→ +∞

f(x) g(x) = a

b.

C lim

x→ +∞[ f (x) − g(x)]= a − b D lim

x→ +∞[ f (x)+ g(x)] = a + b

Câu 100. [1] Đạo hàm của làm số y = log x là

A y0 = 1

xln 10. B.

1

0 = ln 10

0 = 1

x.

Câu 101. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

1

1

e2

Câu 102. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 2

a3√ 3

3√ 3

Câu 103. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 104. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

2x ln x. B y

0 = 2x ln 2 C y0 = 2x ln x D y0 = 1

ln 2.

Câu 105. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

A (+∞; −∞) B [3;+∞) C [1;+∞) D (−∞; 1].

Câu 106. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x3−3mx 2 +m

nghịch biến trên khoảng (−∞;+∞)

Câu 107. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

A.

√ 5

Câu 108. Tính limcos n+ sin n

n2+ 1

Câu 109. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

3

√ 3

√ 3

4 .

Trang 9

Câu 110. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là −1, phần ảo là −4 B Phần thực là 4, phần ảo là 1.

C Phần thực là −1, phần ảo là 4 D Phần thực là 4, phần ảo là −1.

Câu 111. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 112. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Câu 113. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 50, 7 triệu đồng B 20, 128 triệu đồng C 3, 5 triệu đồng D 70, 128 triệu đồng.

Câu 114. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là

A. C

20

50.(3)30

40

50.(3)10

10

50.(3)40

20

50.(3)20

450

Câu 115. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 116. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 117. [1] Tập xác định của hàm số y= 2x−1là

A. D = (0; +∞) B. D = R \ {0} C. D = R D. D = R \ {1}

Câu 118. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 1

3

√ 3

2 .

Câu 119. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi

M, N và P lần lượt là tâm của các mặt bên ABB0

A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A 6

√ 3

20√3

√ 3

Câu 120. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 121. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

A 1+ 2 sin 2x B −1+ sin x cos x C −1+ 2 sin 2x D 1 − sin 2x.

Câu 122. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 123. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tam giác và một hình chóp tứ giác.

B Một hình chóp tứ giác và một hình chóp ngũ giác.

Trang 10

C Hai hình chóp tam giác.

D Hai hình chóp tứ giác.

Câu 124. [2] Tổng các nghiệm của phương trình 3x−1.2x2 = 8.4x−2là

Câu 125. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối lập phương B Khối bát diện đều C Khối tứ diện đều D Khối 12 mặt đều.

Câu 126. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

√ 6

a

√ 6

6 .

Câu 127. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

2

3.

Câu 128. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 129. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 130. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều đúng B Cả hai đều sai C Chỉ có (II) đúng D Chỉ có (I) đúng.

HẾT

Ngày đăng: 10/04/2023, 13:05

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN