1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn thi thpt 1 (356)

13 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt 1
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 13
Dung lượng 155,41 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2 c] Giá trị lớn nhất của hàm số y = xe−2x2 trên đoạn [1;[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [2-c] Giá trị lớn nhất của hàm số y = xe−2x2 trên đoạn [1; 2] là

A. 2

1

e2

Câu 2. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 3. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 4. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ (a; b), ta có f0(x)= F(x)

C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 5. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 50, 7 triệu đồng B 3, 5 triệu đồng C 20, 128 triệu đồng D 70, 128 triệu đồng.

Câu 6. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 3

√ 3

1

Câu 7. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 8. Tính lim

x→1

x3− 1

x −1

Câu 9. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= 2i B P= −1+ i

√ 3

√ 3

Câu 10. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A.

√ 17

17 .

Câu 11. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 12. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 13. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Trang 2

Câu 14. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 10 B f0(0)= 1

ln 10. C f

0 (0)= ln 10 D f0(0)= 1

Câu 15. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 16. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 17. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A a

√ 6

a

√ 6

a

√ 6

2 .

Câu 18. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 19. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 20. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A.

√ 2

Câu 21. Tính lim n −1

n2+ 2

Câu 22. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 23. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 24 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

B.

Z

u0(x)

u(x)dx= log |u(x)| + C

C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

Câu 25. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 26. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3

− mx2+ 3x + 4 đồng biến trên R

Câu 27. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 2ac

3b+ 3ac

3b+ 3ac

3b+ 2ac

c+ 3 .

Trang 3

Câu 28. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

ln 2

2 .

Câu 29. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 30. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

5

Câu 31. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 32. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 6

6 . B V = πa3

√ 3

2 . C V = πa3

√ 3

6 . D V = πa3

√ 3

3 .

Câu 33. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

2

a

2a

a

4.

Câu 34. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 35. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 36. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

√ 57

2a√57

19 .

Câu 37. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3)−√ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 38. Khối đa diện đều loại {4; 3} có số mặt

Câu 39. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

38

3a√58

a√38

3a

29.

Câu 40. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

√ 3

a√3

3 .

Câu 41. [1] Biết log6 √a= 2 thì log6abằng

Trang 4

Câu 42. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 43. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 44. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

C Phần thực là −3, phần ảo là −4 D Phần thực là −3, phần ảo là 4.

Câu 45. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

Câu 46. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị lớn nhất trên K B f (x) xác định trên K.

Câu 47. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 48. Khối đa diện đều loại {3; 3} có số mặt

Câu 49. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 50. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Chỉ có (II) đúng B Cả hai câu trên sai C Cả hai câu trên đúng D Chỉ có (I) đúng.

Câu 51. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 52. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 53. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 log 2x

x3 B y0 = 1 − 2 ln 2x

x3ln 10 . C y

0 = 1 2x3ln 10. D y

0 = 1 − 4 ln 2x 2x3ln 10 .

Câu 54. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

Trang 5

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x).

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

C Câu (III) sai D Câu (I) sai.

Câu 55. Tìm m để hàm số y= x3

− 3mx2+ 3m2có 2 điểm cực trị

Câu 56. Xác định phần ảo của số phức z= (√2+ 3i)2

A 6

Câu 57. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là

A. C

10

50.(3)40

40

50.(3)10

20

50.(3)20

20

50.(3)30

450

Câu 58. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 59. Tính lim

x→ +∞

x −2

x+ 3

Câu 60. Cho

Z 1

0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

2.

Câu 61. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 62. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

√ 3

√ 3

3

4.

Câu 63. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 64. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 65. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 66. Hàm số y= x3

− 3x2+ 4 đồng biến trên:

Câu 67. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

A. 11

9

2.

Trang 6

Câu 68. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3√

3

a3

√ 3

3√

3

4 .

Câu 69. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 70. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

A. a

3

a

a

2.

Câu 71. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

√ 3

Câu 72. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 73 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

C Cả ba đáp án trên.

D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

Câu 74. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 75. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. 2a

3√

3

a3√ 3

3√

3√ 3

6 .

Câu 76. Hàm số nào sau đây không có cực trị

A y = x +1

x. B y= x4− 2x+ 1 C y= x3− 3x D y= x −2

2x+ 1.

Câu 77. [4-1228d] Cho phương trình (2 log23x −log3x −1)

4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 78. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 4 đỉnh, 8 cạnh, 4 mặt B 3 đỉnh, 3 cạnh, 3 mặt C 4 đỉnh, 6 cạnh, 4 mặt D 6 đỉnh, 6 cạnh, 4 mặt.

Câu 79. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 80. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

a3√3

a3√3

12 .

Trang 7

Câu 81. Cho hàm số y= x3

− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng −∞;1

3

! B Hàm số nghịch biến trên khoảng 1

3; 1

!

C Hàm số đồng biến trên khoảng 1

3; 1

!

Câu 82. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 3

a3√ 6

a3√ 2

16 .

Câu 83. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 84. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2

− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 85. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0; 2).

C Hàm số đồng biến trên khoảng (0;+∞) D Hàm số nghịch biến trên khoảng (−∞; 2).

Câu 86. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 log 2x

x3 B y0 = 1 − 4 ln 2x

2x3ln 10 . C y

0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 2x3ln 10.

Câu 87. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 88. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

B Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

C Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

D Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

Câu 89. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1

9

!x là

Câu 90 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

C Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

D Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

Trang 8

Câu 91. Khối đa diện đều loại {3; 5} có số cạnh

Câu 92. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

A 2√3, 4

3, 38 B 8, 16, 32 C 6, 12, 24 D 2, 4, 8.

Câu 93. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 94. Dãy số nào sau đây có giới hạn khác 0?

A. n+ 1

1

sin n

1

n.

Câu 95. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 96. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 97. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 98. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 9 lần B Tăng gấp 27 lần C Tăng gấp 3 lần D Tăng gấp 18 lần.

Câu 99. Tứ diện đều thuộc loại

Câu 100. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc

60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 4a

3√

3

a3

√ 3

5a3

√ 3

2a3

√ 3

3 .

Câu 101 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx B.

Z

f(x)g(x)dx=Z f(x)dx

Z g(x)dx

C.

Z

( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx D.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0

Câu 102. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn

nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = (1, 01)3

(1, 01)3− 1 triệu. B m = 120.(1, 12)3

(1, 12)3− 1 triệu.

C m = 100.1, 03

3 triệu.

Câu 103. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Trang 9

Câu 104. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là

A. 7

3; 0; 0

!

3; 0; 0

!

3; 0; 0

!

Câu 105. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A a

√ 57

a√57

a√57

17 .

Câu 106. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 107. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng

A. 1079

1728

23

1637

4913.

Câu 108. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 9 cạnh, 5 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 6 mặt.

Câu 109. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 110. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 111. [1] Tập xác định của hàm số y= 4x 2 +x−2là

A. D = (−2; 1) B. D = R \ {1; 2} C. D = [2; 1] D. D = R

Câu 112. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 113. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x= t

y= −1

z= −t

và hai mặt phẳng (P), (Q)

lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)

A (x+ 3)2+ (y + 1)2+ (z − 3)2= 9

4. B (x+ 3)2+ (y + 1)2+ (z + 3)2= 9

4.

C (x − 3)2+ (y + 1)2+ (z + 3)2= 9

2+ (y − 1)2+ (z − 3)2= 9

4.

Câu 114. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

− 1

Câu 115. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

Câu 116. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

1

1

4.

Câu 117. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

x→a + f(x)= lim

x→a − f(x)= +∞

C lim

x→a + f(x)= lim

x→a − f(x)= a

Trang 10

Câu 118. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

Câu 119. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln 2 B y0 = 1

0 = 2x ln x D y0 = 1

2x ln x.

Câu 120. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

3

2 e

π

√ 2

2 e

π

2e

π

Câu 121. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 122. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

6

3√

3√ 15

a3√5

3 .

Câu 123. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Năm tứ diện đều.

B Một tứ diện đều và bốn hình chóp tam giác đều.

C Năm hình chóp tam giác đều, không có tứ diện đều.

D Bốn tứ diện đều và một hình chóp tam giác đều.

Câu 124. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2

2 = y −3

3 = z+ 4

−5 và d

0 : x+ 1

3 = y −4

−2 = z −4

−1

A. x −2

2 = y+ 2

2 = z −3

x

1 = y

1 = z −1

1 .

C. x −2

2 = y −2

3 = z −3

x

2 = y −2

3 = z −3

−1 .

Câu 125. [2] Tập xác định của hàm số y= (x − 1)1

A. D = (1; +∞) B. D = R \ {1} C. D = (−∞; 1) D. D = R

Câu 126. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 127. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 128. Thể tích của khối lập phương có cạnh bằng a

√ 2

A V = a3√

3√ 2

√ 2

Câu 129. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. 2a

3√

6

a3√6

3√

3√ 6

3 .

Ngày đăng: 10/04/2023, 13:01

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN