1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn thi thpt 10 (464)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt 10 (464)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 149,22 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Đạo hàm của làm số y = log x là A y′ = 1 x B 1 10 ln x[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [1] Đạo hàm của làm số y = log x là

A y0 = 1

1

0 = ln 10

0 = 1

xln 10.

Câu 2. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 3. [2D1-3] Tìm giá trị của tham số m để hàm số y = −1

3x

3

− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng

√ 24

A m = −3 B −3 ≤ m ≤ 4 C m= 4 D m= −3, m = 4

Câu 4. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

A. 1

1

1

8.

Câu 5. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối bát diện đều B Khối tứ diện đều C Khối 12 mặt đều D Khối 20 mặt đều.

Câu 6. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

A -2

7

Câu 7. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 8. [2] Cho hàm số y= log3(3x + x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 9. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

Câu 10. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

Câu 11. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 12. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 13. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

A m > −5

5

4 < m < 0 D m ≤ 0.

Câu 14. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

Trang 2

Câu 15. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 16. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 17. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3

a3

√ 15

a3

√ 15

a3

√ 5

25 .

Câu 18. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 19. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 20. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 21. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 22 Hình nào trong các hình sau đây không là khối đa diện?

Câu 23. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3

a3

√ 3

a3

√ 3

3

Câu 24. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

3√

6

a3

√ 6

4a3

√ 6

3√ 6

Câu 25. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

3√

3

a3√ 3

8a3√ 3

4a3√ 3

9 .

Câu 26. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 27. Tính giới hạn lim2n+ 1

3n+ 2

A. 1

3

2

Trang 3

Câu 28. Dãy số nào có giới hạn bằng 0?

A un= n3− 3n

n+ 1 . B un = −2

3

!n C un = 6

5

!n D un = n2− 4n

Câu 29. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tứ giác.

B Hai hình chóp tam giác.

C Một hình chóp tứ giác và một hình chóp ngũ giác.

D Một hình chóp tam giác và một hình chóp tứ giác.

Câu 30. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 31. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và

3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

A. 2

3

√ 3

Câu 32. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 33. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√ 6

a3√ 2

a3√ 6

36 .

Câu 34. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

Câu 35. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 36. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 37. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

a

√ 57

√ 57

19 .

Câu 38. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

Câu 39. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

9

23

5

16.

Câu 40. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Trang 4

Câu 41. Khối đa diện đều loại {5; 3} có số cạnh

Câu 42. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 43. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 44. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị lớn nhất trên K B f (x) có giá trị nhỏ nhất trên K.

Câu 45. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 46. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A a

√ 3

2a√3

a√3

3 .

Câu 47. [1] Tập xác định của hàm số y= 2x−1là

A. D = R B. D = (0; +∞) C. D = R \ {1} D. D = R \ {0}

Câu 48. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

Câu 49. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số nghịch biến trên khoảng (−2; 1).

B Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

C Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

D Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

Câu 50 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx B.

Z ( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx

C.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0 D.

Z

f(x)g(x)dx=

Z

f(x)dx

Z g(x)dx

Câu 51. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

16 .

Câu 52. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 53. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 54. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Trang 5

Câu 55. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 56. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3√

3

a3

3√

3√ 3

12 .

Câu 57. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối lập phương B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.

Câu 58. Khối đa diện đều loại {4; 3} có số cạnh

Câu 59. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; 3; 3) B A0(−3; −3; −3) C A0(−3; −3; 3) D A0(−3; 3; 1)

Câu 60. Khối chóp ngũ giác có số cạnh là

Câu 61. Thể tích của khối lập phương có cạnh bằng a

√ 2

A V = a3√

3√ 2

3 .

Câu 62. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 63. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

A 2

√ 2

Câu 64. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= −1 − i

√ 3

2 . B P= −1+ i

√ 3

Câu 65. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

2

Câu 66. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là

2 − 1, phần ảo là

2 − 1, phần ảo là −

√ 3

C Phần thực là 1 −

2, phần ảo là −

2, phần ảo là 1 −

√ 3

Câu 67. Tính lim 5

n+ 3

Câu 68. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng −∞;1

3

! B Hàm số nghịch biến trên khoảng 1

3; 1

!

C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số đồng biến trên khoảng 1

3; 1

!

Câu 69. Hàm số y= x + 1

x có giá trị cực đại là

Câu 70. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Trang 6

Câu 71. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 72. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A a

√ 2

√ 2

2 .

Câu 73. Tính limcos n+ sin n

n2+ 1

Câu 74. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

A. 3

Câu 75. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 76. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 77. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 78. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 79 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 80. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 18

11 − 29

21 B Pmin = 9

11+ 19

9 . C Pmin = 9

11 − 19

9 . D Pmin= 2

11 − 3

Câu 81. Khối đa diện đều loại {3; 4} có số mặt

Câu 82. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 83. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 84. [1] Tính lim1 − 2n

3n+ 1 bằng?

2

1

3.

Trang 7

Câu 85. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 3ac

3b+ 2ac

3b+ 2ac

c+ 3 .

Câu 86. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

6.

Câu 87. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

5.

Câu 88. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

1

1

3.

Câu 89. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?

A. 3

9

Câu 90. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

3

√ 3

√ 3

12.

Câu 91. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 92. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

Câu 93. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 94. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

Câu 95. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 96. [4] Xét hàm số f (t)= 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 97. [1] Giá trị của biểu thức log √31

10 bằng

A −1

1

Câu 98. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Trang 8

Câu 99. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 100. [1] Giá trị của biểu thức 9log3 12bằng

Câu 101 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

B.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

C.

Z

[ f (x)+ g(x)]dx =

Z

f(x)dx+

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

D.

Z

[ f (x) − g(x)]dx=

Z

f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

Câu 102. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Câu 103. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 104. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 105. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 106. [3-1214d] Cho hàm số y= x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

√ 2

Câu 107. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 108. Tính lim

x→2

x+ 2

x bằng?

Câu 109. [4-1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 110. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

A.

√ 2

Câu 111. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 112. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3√

3

a3√3

3

3 .

Trang 9

Câu 113. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

a

√ 6

√ 6

2 .

Câu 114. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 115. Tính lim

x→3

x2− 9

x −3

Câu 116. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 117. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3√ 6

a3√ 6

a3√ 3

24 .

Câu 118. Bát diện đều thuộc loại

Câu 119. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

3

#

5

# C. " 2

5;+∞

!

"

−2

3;+∞

!

Câu 120. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 121. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 122. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng số cạnh của khối chóp.

B Số mặt của khối chóp bằng 2n+1.

C Số đỉnh của khối chóp bằng 2n+ 1

D Số cạnh của khối chóp bằng 2n.

Câu 123. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1

9

!x là

Câu 124. [12212d] Số nghiệm của phương trình 2x−3.3x−2

− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 125. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A. a

6

√ 3

Trang 10

Câu 126. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 127. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 128. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của

P= xy + x + 2y + 17

Câu 129. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3

√ 2

a3

√ 2

a3

√ 2

2 .

Câu 130. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

HẾT

Ngày đăng: 10/04/2023, 12:16

w