1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn thi thpt 10 (697)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt 10 (697)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Thành phố Việt Nam
Định dạng
Số trang 12
Dung lượng 147,17 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hình chóp S ABC có B̂AC = 90◦, ÂBC = 30◦; S BC là tam[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

2

2√

3√ 3

a3√3

12 .

Câu 2 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

A Bát diện đều B Thập nhị diện đều C Nhị thập diện đều D Tứ diện đều.

Câu 3. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 4. Hàm số y= x + 1

x có giá trị cực đại là

Câu 5. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A 2

√ 3

Câu 6. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 7. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3√

3

a3

a3

√ 3

3√ 3

Câu 8. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 9. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3

a3√ 3

a3√ 3

a3√ 3

12 .

Câu 10. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 11. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 12. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 13. [1] Đạo hàm của làm số y = log x là

A y0 = 1

xln 10. B.

1

0 = ln 10

0 = 1

x.

Câu 14. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 2

5n − 3n2 B un = n2− 3n

n2 C un = n2+ n + 1

(n+ 1)2 D un = 1 − 2n

5n+ n2

Trang 2

Câu 15. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 16. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 17. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 18. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

3

2 e

π

√ 2

2 e

π

2e

π

Câu 19. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A a

√ 57

2a√57

a√57

17 .

Câu 20. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

A −1

1

Câu 21. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 22. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

2x ln x. B y

0 = 1

0 = 2x ln x D y0 = 2x ln 2

Câu 23. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

5

Câu 24. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√3

a3√3

a3√3

6 .

Câu 25. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1 B M= 1

e, m = 0 C M = e, m = 0 D M = e, m = 1

e.

Câu 26. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 27. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tứ giác và một hình chóp ngũ giác.

B Hai hình chóp tam giác.

C Một hình chóp tam giác và một hình chóp tứ giác.

D Hai hình chóp tứ giác.

Trang 3

Câu 28. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 29. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 30. Tính giới hạn lim2n+ 1

3n+ 2

A. 2

3

1

2.

Câu 31. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 32. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính

f(2)+ f (4)?

Câu 33. Dãy số nào sau đây có giới hạn khác 0?

A. √1

1

n+ 1

sin n

n .

Câu 34. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = a3

3

2 . B V = 3a3√

3 C V = 3a3

√ 3

2 . D V = 6a3

Câu 35. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 36. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 37. Tính limcos n+ sin n

n2+ 1

Câu 38. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 39. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 40. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 41. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 42. Khối đa diện đều loại {3; 4} có số cạnh

Câu 43. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Trang 4

Câu 44. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 45. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 4 đỉnh, 8 cạnh, 4 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 6 đỉnh, 6 cạnh, 4 mặt.

Câu 46. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (1; 0; 2) B ~u= (2; 1; 6) C ~u= (3; 4; −4) D ~u= (2; 2; −1)

Câu 47. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2+ 1; m = 1 B M = e2− 2; m = e−2+ 2

C M = e−2− 2; m= 1 D M = e−2+ 2; m = 1

Câu 48. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 9 cạnh, 5 mặt B 6 đỉnh, 9 cạnh, 6 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.

Câu 49. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

2S h.

Câu 50. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

√ 3

√ 3

3 .

Câu 51. Tính lim 5

n+ 3

Câu 52. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 2a

8a

a

5a

9 .

Câu 53. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 54. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 55. Tính lim

x→ +∞

x −2

x+ 3

Câu 56. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A.

√ 17

√ 34

Câu 57. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Trang 5

Câu 58. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 59. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 60. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 61. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 62. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

√ 2

Câu 63. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

Câu 64. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối lập phương.

Câu 65. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 66. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 67. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

B Số đỉnh của khối chóp bằng số mặt của khối chóp.

C Số cạnh của khối chóp bằng số mặt của khối chóp.

D Số đỉnh của khối chóp bằng số cạnh của khối chóp.

Câu 68. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A.

"

−2

3;+∞

! B. " 2

5;+∞

!

3

#

5

#

Câu 69. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 70. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 71. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?

A y = logπ

C y = logaxtrong đó a= √3 − 2 D y = log√

2x

Câu 72. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Trang 6

Câu 73. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là −1, phần ảo là −4 B Phần thực là −1, phần ảo là 4.

C Phần thực là 4, phần ảo là 1 D Phần thực là 4, phần ảo là −1.

Câu 74. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 75. Khối đa diện đều loại {3; 5} có số cạnh

Câu 76. Khối đa diện đều loại {3; 3} có số mặt

Câu 77. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

C lim un= 1

Câu 78. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

A m ≤ 0 B m < 0 ∨ m= 4 C m < 0 ∨ m > 4 D m < 0.

Câu 79. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 80 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C B. Z f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C

C.

Z

f(x)dx

!0

Z

k f(x)dx= kZ f(x)dx, k là hằng số

Câu 81. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Không thay đổi B Tăng lên n lần C Tăng lên (n − 1) lần D Giảm đi n lần.

Câu 82. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 83. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

B F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

C Cả ba câu trên đều sai.

D F(x)= G(x) trên khoảng (a; b)

Câu 84. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 85. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A a

√ 6

a

√ 6

a

√ 6

3 .

Câu 86. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A. 5

13

√ 2

Trang 7

Câu 87. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

Câu 88. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 89. Khối đa diện đều loại {3; 5} có số mặt

Câu 90. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 91. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là √2, phần ảo là 1 −

3 B Phần thực là √2 − 1, phần ảo là

√ 3

C Phần thực là 1 −

2, phần ảo là −

2 − 1, phần ảo là −

√ 3

Câu 92. [4-1228d] Cho phương trình (2 log23x −log3x −1)

4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 93. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là

Câu 94. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 95. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 96. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 97. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 98. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 99. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 100. Khối đa diện đều loại {3; 4} có số mặt

Câu 101. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 102. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Trang 8

Câu 103. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là

A. C

10

50.(3)40

20

50.(3)30

40

50.(3)10

20

50.(3)20

450

Câu 104. Hàm số nào sau đây không có cực trị

A y = x +1

x. B y= x3− 3x C y= x −2

2x+ 1. D y= x4− 2x+ 1.

Câu 105. Tính lim

x→−∞

x+ 1 6x − 2 bằng

1

1

3.

Câu 106. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 107. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

A. 27

Câu 108. Tìm giá trị của tham số m để hàm số y= −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 109. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

1

2e3

Câu 110. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 111. Trong không gian cho hai điểm A, B cố định và độ dài AB= 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?

3

2.

Câu 112. Tính lim

x→3

x2− 9

x −3

Câu 113. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 114. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 115. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 116. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2(e) là:

A. 8

1

8

1

3.

Trang 9

Câu 117. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng 2n+1.

B Số cạnh của khối chóp bằng 2n.

C Số mặt của khối chóp bằng số cạnh của khối chóp.

D Số đỉnh của khối chóp bằng 2n+ 1

Câu 118. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A. " 5

2; 3

!

"

2;5 2

!

Câu 119. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2

)?

Câu 120. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều sai B Cả hai đều đúng C Chỉ có (I) đúng D Chỉ có (II) đúng.

Câu 121. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√3

a3√3

a3√3

24 .

Câu 122. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

2a

√ 57

√ 57

17 .

Câu 123. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 124. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

Câu 125. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 126. [2] Đạo hàm của hàm số y = x ln x là

A y0 = 1 − ln x B y0 = 1 + ln x C y0 = ln x − 1 D y0 = x + ln x

Câu 127 Phát biểu nào sau đây là sai?

A lim1

C lim 1

Câu 128. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Trang 10

Câu 129. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

6

3√

3√ 5

a3

√ 15

3 .

Câu 130. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. 2a

3√

3

a3√ 3

a3√ 3

3√ 3

HẾT

Ngày đăng: 10/04/2023, 12:15

w