TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 2. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 3. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 4 Mệnh đề nào sau đây sai?
A.
Z
f(x)dx
!0
= f (x)
B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
Câu 5. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 6. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Chỉ có (II) đúng B Cả hai đều đúng C Cả hai đều sai D Chỉ có (I) đúng.
Câu 7. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = (−∞; 1) B. D = R \ {1} C. D = (1; +∞) D. D = R
Câu 8. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
A. 2017
2016
4035
2018.
Câu 9. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là
√
2 − 1, phần ảo là
√
√
2, phần ảo là 1 −
√ 3
C Phần thực là √2 − 1, phần ảo là −
√
3 D Phần thực là 1 − √2, phần ảo là −
√ 3
Câu 10. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 11. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 12. Khối đa diện đều loại {3; 4} có số cạnh
Câu 13. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Trang 2Câu 14. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 15. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 16. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
A. 1
1
1
8.
Câu 17. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 18. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 19. Giá trị cực đại của hàm số y = x3
− 3x2− 3x+ 2
√
√ 2
Câu 20. [1] Đạo hàm của làm số y = log x là
0 = 1
xln 10. C y
0 = ln 10
0 = 1
x.
Câu 21. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Năm hình chóp tam giác đều, không có tứ diện đều.
B Năm tứ diện đều.
C Một tứ diện đều và bốn hình chóp tam giác đều.
D Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 22. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. 2a
√
3
a√3
a√3
√ 3
Câu 23. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 24. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
1
2.
Câu 25. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
d: x+ 1
2 = y −5
2 = z
−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng
dđồng thời cách A một khoảng bé nhất
A ~u = (1; 0; 2) B ~u= (2; 2; −1) C ~u= (3; 4; −4) D ~u= (2; 1; 6)
Câu 26. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
A. 9
11
Câu 27. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Trang 3Câu 28. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 3, 5 triệu đồng B 50, 7 triệu đồng C 70, 128 triệu đồng D 20, 128 triệu đồng.
Câu 29. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A 6
√
√
√ 3
14√3
3 .
Câu 30. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 31. Tính lim
x→1
x3− 1
x −1
Câu 32. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 33. Tìm m để hàm số y= x3
− 3mx2+ 3m2có 2 điểm cực trị
Câu 34. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
− 1
Câu 35. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 36. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
Câu 37. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 38. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 39. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 40. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối lập phương B Khối 12 mặt đều C Khối tứ diện đều D Khối bát diện đều.
Câu 41. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 42. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Trang 4Câu 43. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 8a
a
5a
2a
9 .
Câu 44. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 1
1
8
8
9.
Câu 45. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 46. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
2
a3√ 3
a3√ 3
a3√ 6
48 .
Câu 47. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
9 .
Câu 48. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {1} B. D = R C. D = R \ {0} D. D = (0; +∞)
Câu 49. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 50 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
C Cả ba đáp án trên.
D Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 51. Thể tích của khối lập phương có cạnh bằng a
√ 2
A. 2a
3√
2
√ 2
Câu 52. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
2 . B V = πa3
√ 3
6 . C V = πa3
√ 6
6 . D V = πa3
√ 3
3 .
Câu 53. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 54. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
2
2 e
π
2e
π
√ 3
2 e
π
6
Trang 5Câu 55. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 56. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi qua
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
C.
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
D.
x= 1 + 7t
y= 1 + t
z= 1 + 5t
Câu 57. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 58. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 59. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 60. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 61. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 62. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
A. 7
5
2.
Câu 63. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
"
2;5 2
!
2; 3
!
Câu 64. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 1
e. B M= 1
e, m = 0 C M = e, m = 1 D M = e, m = 0
Câu 65. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√2
a3√3
a3√3
4 .
Câu 66. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m < 1
1
1
1
4.
Trang 6Câu 67. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 68. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
2
3√
3√ 3
a3√ 3
2 .
Câu 69. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 ln 2x
x3ln 10 . B y
0 = 1 2x3ln 10. C y
0 = 1 − 4 ln 2x 2x3ln 10 . D y
0 = 1 − 2 log 2x
x3
Câu 70. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
Câu 71. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
√
38
a
√ 38
3a√58
3a
29.
Câu 72. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 73. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 ln 2x
x3ln 10 . B y
0 = 1 2x3ln 10. C y
0 = 1 − 2 log 2x
x3 D y0 = 1 − 4 ln 2x
2x3ln 10 .
Câu 74. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
A.
√
√
Câu 75. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
A. 23
1079
1637
1728
4913.
Câu 76. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 77. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 78. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A −1
1
1
e2
Câu 79. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 80. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
Trang 7(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 81. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 82. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 83. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
9
5
23
100.
Câu 84. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
4.
Câu 85. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. √ ab
2
√
a2+ b2 D. ab
a2+ b2
Câu 86. Xác định phần ảo của số phức z= (√2+ 3i)2
A 6
√
√
Câu 87. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3
2a3√ 3
a3
4a3√ 3
3 .
Câu 88. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 89. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Trục ảo.
B Trục thực.
C Hai đường phân giác y= x và y = −x của các góc tọa độ
D Đường phân giác góc phần tư thứ nhất.
Câu 90. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
3S h. D V = 1
2S h.
Câu 91. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
Trang 8(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A Chỉ có (II) đúng B Cả hai câu trên đúng C Chỉ có (I) đúng D Cả hai câu trên sai.
Câu 92. Dãy số nào sau đây có giới hạn là 0?
A un= n2+ n + 1
(n+ 1)2 B un = 1 − 2n
5n+ n2 C un = n2− 2
5n − 3n2 D un = n2− 3n
n2
Câu 93. Khối đa diện đều loại {4; 3} có số mặt
Câu 94. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh của khối chóp bằng số mặt của khối chóp.
B Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C Số đỉnh của khối chóp bằng số mặt của khối chóp.
D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 95. Tính lim n −1
n2+ 2
Câu 96. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
Câu 97. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Một khối chóp tam giác, một khối chóp tứ giác.
B Hai khối chóp tứ giác.
C Hai khối chóp tam giác.
D Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 98. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A. 1
√
Câu 99. Tìm giá trị lớn chất của hàm số y= x3
− 2x2− 4x+ 1 trên đoạn [1; 3]
A. 67
Câu 100. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
Câu 101. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x
1 = y
1 = z −1
x
2 = y −2
3 = z −3
−1 .
C. x −2
2 = y −2
3 = z −3
x −2
2 = y+ 2
2 = z −3
2 .
Câu 102. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Trang 9Câu 103. [2] Tổng các nghiệm của phương trình 3x −3x+8 = 92x−1
là
Câu 104 Phát biểu nào sau đây là sai?
n = 0
nk = 0
Câu 105. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 106. Khối đa diện đều loại {3; 3} có số mặt
Câu 107. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
2
2√
3√ 3
a3√ 3
24 .
Câu 108. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga
3
√
abằng
1
Câu 109. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối 20 mặt đều.
Câu 110. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 111. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 112. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
A. 1
Câu 113. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 114. [2] Phương trình logx4 log2 5 − 12x
12x − 8
!
= 2 có bao nhiêu nghiệm thực?
Câu 115. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 116. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= loga2 B log2a= 1
log2a. C log2a= 1
loga2. D log2a= − loga2
Câu 117. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x
lần lượt là
A 2
√
√
2 và 3 D 2 và 2
√ 2
Câu 118. [1] Biết log6 √a= 2 thì log6abằng
Trang 10Câu 119. Cho
1
0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
2.
Câu 120. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
!x là
Câu 121. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4 − 2e. B m= 1 − 2e
4e+ 2. C m=
1 − 2e
4 − 2e. D m= 1+ 2e
4e+ 2.
Câu 122. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 123. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 124. Tính lim
x→ +∞
x −2
x+ 3
A −2
Câu 125. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 126. Tính lim
x→3
x2− 9
x −3
Câu 127. Tính giới hạn lim2n+ 1
3n+ 2
3
2
3.
Câu 128. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
√
√ 57
a√57
19 .
Câu 129. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = R B. D = [2; 1] C. D = (−2; 1) D. D = R \ {1; 2}
Câu 130. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A.
√
3
3
1
HẾT