LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Biết ∫ f (u)du = F(u) +C Mệnh đề nào dưới đây đúng? A ∫ f (2x − 1)dx = 2F(x) − 1[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?
A.R f(2x − 1)dx= 2F(x) − 1 + C B. R f(2x − 1)dx = F(2x − 1) + C
2F(2x − 1)+ C
Câu 2 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,
I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)
√ 5
a
√ 15
a
√ 5
6 .
Câu 3 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 4 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b − log√
ba3
A. m
2− 3
m2− 12
4m2− 3
m2− 12
Câu 5 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Câu 6 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z
Giá trị của biểu thức A = xy + yz + zxbằng?
Câu 7 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017
A (1;+∞) B (1
4).
Câu 8 Tìm nghiệm của phương trình 2x = (√3)x
Câu 9 Tập nghiệm của bất phương trình log3(10 − 3x+1) ≥ 1 − x chứa mấy số nguyên
Câu 10 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là
Câu 11 Cho hàm số có bảng biến thiên:
Khẳng định nào sau đây là đúng?
A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại
C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại
Câu 12 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn
z+ 4 − 8i
= 2√5
là đường tròn có phương trình:
A (x+ 4)2+ (y − 8)2 = 20 B (x − 4)2+ (y + 8)2= 2√5
C (x+ 4)2+ (y − 8)2 = 2√5 D (x − 4)2+ (y + 8)2= 20
Câu 13 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?
A V = 32
5 .
Trang 2Câu 14 Cho số phức z= a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −
z
i= 0 Tính S = 2a + 3b
Câu 15 Cho cấp số nhân (un) với u1= −1
2; u7= −32 Tìm q?
Câu 16 Đồ thị hàm số y= x+ 1
x −2 (C) có các đường tiệm cận là
A y= 2 và x = 1 B y= 1 và x = 2 C y= 1 và x = −1 D y= −1 và x = 2
Câu 17 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên) Thể tích khối chóp đã cho bằng
Câu 18 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
Câu 19 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−22 = y−1
2 = z−1
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
Câu 20 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 21 Có bao nhiêu số nguyên x thỏa mãn log3 x2−16
343 < log7 x2−16
27 ?
Câu 22 Cho hàm số y= f (x) có đạo hàm f′
(x) = (x − 2)2
(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 23 Tích tất cả các nghiệm của phương trình ln2x+ 2 ln x − 3 = 0 bằng
Câu 24 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 25 Trong không gian 0xyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (2; 4; 6) B (−1; −2; −3) C (1; 2; 3) D (−2; −4; −6).
Câu 26 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 1
11
3 .
Câu 27 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 28 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị?
Trang 3Câu 29 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′
(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′(x) bằng
A. 1
4
5
1
2.
Câu 30 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)
Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 31 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
Câu 32 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 33 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 34 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1
z+ z + 2i là số thuần ảo?
A Một đường tròn B Một đường thẳng C Một Parabol D Một Elip.
Câu 35 Cho z1, z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1− z2| = 1 Tính giá trị biểu thức
P= |z1+ z2|
√ 2
√ 3
2 .
Câu 36 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường tròn Tính bán kính r của đường tròn đó
Câu 37 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?
A. 3
1
2 < |z| < 3
2. C |z| <
1
2. D |z| > 2.
Câu 38 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là
C w= √27 − i hoặcw= √27+ i D w= −√27 − i hoặcw= −√27+ i
Câu 39 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|
A max T = 3√5 B max T = 3√2 C max T = 2√10 D max T = 2√5
Câu 40 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z
w là
số thuần ảo thì mệnh đề nào sau đây đúng?
A Tam giác OAB là tam giác vuông B Tam giác OAB là tam giác nhọn.
C Tam giác OAB là tam giác đều D Tam giác OAB là tam giác cân.
Câu 41 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5
A (x+ 1)2+ (y − 2)2 = 125 B (x − 5)2+ (y − 4)2= 125
Trang 4Câu 42 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′
là điểm biểu diễn của số phức z′ = 1+ i
trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′
A S = 25
2 .
Câu 43 Tìm tập xác định D của hàm số y=
r
log23x+ 1
x −1
A D = (−∞; −1] ∪ (1; +∞)
C D = (−∞; 0)
D D = (1; +∞)
Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)
A.
x= 1 − 2t
y= −2 + 3t
z= 4 + 5t
x= 1 + 2t
y= −2 + 3t
z= 4 − 5t
x= 1 + 2t
y= −2 − 3t
z= 4 − 5t
x= −1 + 2t
y= 2 + 3t
z= −4 − 5t
Câu 45 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m < −2 B m > 1 C m > 2 hoặc m < −1 D m > 1 hoặc m < −1
3.
Câu 46 Cho bất phương trình 3
√ 2(x−1) +1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng
A Bất phương trình đúng với mọi x ∈ (4;+∞)
B Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
C Bất phương trình đúng với mọi x ∈ [ 1; 3].
D Bất phương trình vô nghiệm.
Câu 47 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A. 1
√ 15
√ 15
√ 5
3 .
Câu 48 Cho tứ diện DABC, tam giác ABC vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết
AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng
A. 5a
√
2
5a√3
5a√3
5a√2
Câu 49 Cho hình lăng trụ đứng ABC.A′
B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′
B′C′
Câu 50 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax = ay
⇔ x= y B Nếu a > 0 thì ax > ay
⇔ x< y
C Nếu a > 1 thì ax > ay ⇔ x> y D Nếu a < 1 thì ax > ay ⇔ x< y
Trang 5HẾT