LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đường cong trong hình bên là đồ thị của hàm số nào? A y = x4 + 1 B y = −x4 + 2x2[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= x4+ 1 B y= −x4+ 2x2+ 1 C y = x4+ 2x2+ 1 D y= −x4+ 1
Câu 2 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?
C.R f(2x − 1)dx= 1
Câu 3 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox
A V = 32π
5 .
Câu 4 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)
Câu 5 Cho hàm số y=
x
3
− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị
Câu 6 Đạo hàm của hàm số y= log√
2
3x − 1
là:
A y′= 2
3x − 1
ln 2
(3x − 1) ln 2. C y
(3x − 1) ln 2. D y
′ = 6 3x − 1
ln 2
Câu 7 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2 − 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất
Câu 8 Tính nguyên hàmR cos 3xdx
A −1
3sin 3x+ C
Câu 9 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y= x2 và đường thẳng y= mx với m , 0 Hỏi có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20
Câu 10 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt
A −4 < m ≤ −3 B −4 < m < −3 C m > −4 D −4 ≤ m < −3.
Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
A x − 2y − 2z − 4= 0 B x+ 2y + 2z + 8 = 0
C −x+ 2y + 2z + 4 = 0 D 3x − 4y+ 6z + 34 = 0
Câu 12 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?
A.
−
→
c
−
→ a
= √2 D.→−b ⊥→−c
Trang 2Câu 13 Với a là số thực dương tùy ý, log5(5a) bằng
A 5 − log5a B 5+ log5a C 1 − log5a D 1+ log5a
Câu 14 Biết
3 R
2
f(x)dx= 3 vàR3
2
g(x)dx= 1 Khi đóR3
2 [ f (x)+ g(x)]dx bằng
Câu 15 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn
z+ 4 − 8i
= 2√5
là đường tròn có phương trình:
A (x+ 4)2+ (y − 8)2 = 20 B (x+ 4)2+ (y − 8)2 = 2√5
C (x − 4)2+ (y + 8)2 = 20 D (x − 4)2+ (y + 8)2 = 2√5
Câu 16 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính
xác suất sao cho có ít nhất một quả màu trắng
A. 1
209
8
1
21.
Câu 17 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
Câu 18 Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x)= m có ba nghiệm thực phân biệt?
Câu 19 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:
A y′ = πxπ B y′ = πxπ−1 C y′ = xπ−1 D y′ = 1
πxπ−1
Câu 20 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z+ 2i| = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 21 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x
3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 22 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 23 Cho hàm số f (x)= cos x + x Khẳng định nào dưới đây đúng?
2 + C
C.R f(x)dx= − sin x + x 2
Câu 24 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:
A y′ = − 1
x ln 3 B y′ = 1
x C y′ = ln 3
x D y′ = 1
x ln 3
Câu 25 Có bao nhiêu số nguyên x thỏa mãn log3 x2343−16 < log7 x 2 −16
27 ?
Câu 26 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x2− 4x+ 1 B y= x4− 3x2+ 2 C y= x3− 3x − 5 D y= x −3
x −1.
Câu 27 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= −1
x.
Trang 3Câu 28 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+
y2+ 24x)?
Câu 29 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπ là:
A y′= 1πxπ−1 B y′ = xπ−1 C y′ = πxπ−1 D y′ = πxπ
Câu 30 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n1= (−1; 1; 1) B.→−n3 = (1; 1; 1) C.→−n2 = (1; −1; 1) D.→−n4 = (1; 1; −1)
Câu 31 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2
0 f(2x) bằng
3
Câu 32 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
2 + C
2 + C
Câu 33 Cho khối lăng trụ đứng ABC · A′
B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
A.
√
2
√ 2
√ 2
4 a
3 D. √2a3
Câu 34 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu
Câu 35 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng
5π
Câu 36 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là
Câu 37 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′ là điểm biểu diễn của số phức z′ = 1+ i
trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′
A S = 25
4 .
Câu 38 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5
C (x+ 1)2+ (y − 2)2 = 125 D (x − 5)2+ (y − 4)2= 125
Câu 39 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường tròn Tính bán kính r của đường tròn đó
Câu 40 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z
w là
số thuần ảo thì mệnh đề nào sau đây đúng?
A Tam giác OAB là tam giác đều B Tam giác OAB là tam giác nhọn.
C Tam giác OAB là tam giác vuông D Tam giác OAB là tam giác cân.
Trang 4Câu 41 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là
A Đường tròn B Parabol C Hai đường thẳng D Một đường thẳng.
Câu 42 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|
A max |z|= 7 B max |z|= 3 C max |z|= 4 D max |z|= 6
Câu 43 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính M+ m
Câu 44 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m > 1 B m > 2 hoặc m < −1 C m < −2 D m > 1 hoặc m < −1
3.
Câu 45 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích
toàn phầnSt pcủa hình nón (N) bằng
A St p = πRl + 2πR2 B St p = 2πRl + 2πR2 C St p = πRh + πR2 D St p = πRl + πR2
Câu 46 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. 3a
√
6
3a
√ 6
3a
√ 30
a
√ 15
Câu 47 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
12.
Câu 48 Cho bất phương trình 3
√ 2(x−1) +1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng
A Bất phương trình vô nghiệm.
B Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
C Bất phương trình đúng với mọi x ∈ [ 1; 3].
D Bất phương trình đúng với mọi x ∈ (4;+∞)
Câu 49 Tính đạo hàm của hàm số y= 5x +cos3x
A y′ = (1 − sin 3x)5x +cos3xln 5 B y′ = (1 + 3 sin 3x)5x +cos3xln 5
C y′ = 5x +cos3xln 5 D y′ = (1 − 3 sin 3x)5x +cos3xln 5.
Câu 50 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x= −1; x = 2
A. 27
23
25
29
4 .
Trang 5HẾT