1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi tham khảo môn toán (510)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 123,05 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A 0 B 1 C π D −1[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 2 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b − log√

ba3

A. m

2− 12

4m2− 3

m2− 3

m2− 12

Câu 3 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′

A. a

3

a√3

a

√ 2

√ 3

Câu 4 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường

tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện

A π√3.a2 B. π√3.a2

2π√2.a2

π√2.a2

Câu 5 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?

2F(2x − 1)+ C

C.R f(2x − 1)dx= F(2x − 1) + C D.R f(2x − 1)dx = 2F(x) − 1 + C

Câu 6 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox

A V = 8π

5 .

Câu 7 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)

A (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 3 B (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 1

3.

C (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 1

3. D (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 3

Câu 8 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung

A m < 0 B m < 1

3. C Không tồn tại m. D 0 < m <

1

3.

Câu 9 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt

phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD

Câu 10 Cho lăng trụ đứng ABC.A

B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′

BC)bằng

600Biết diện tích của tam giác∆A′BCbằng 2a2Tính thể tích V của khối lăng trụ ABC.A′B′C′

A V = a3

3

Câu 11 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?

Trang 2

Câu 12 Tập nghiệm của bất phương trình log3(10 − 3x+1) ≥ 1 − x chứa mấy số nguyên.

Câu 13 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm

tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→

A M(−2; 6; −4) B M(−2; −6; 4) C M(2; −6; 4) D M(5; 5; 0).

Câu 14 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi

có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20

Câu 15 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?

A.

3

1

√ 3

√ 15

5 .

Câu 16 Biết F(x)= x2là một nguyên hàm của hàm số f (x) trên R Giá trị của

3 R

1 [1+ f (x)]dx bằng

A. 32

26

3 .

Câu 17 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng

Câu 18 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 19 Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

24

Câu 20 NếuR4

−1 f(x)dx= 2 và R−14 g(x)dx= 3 thì R−14[ f (x)+ g(x)]dx bằng

Câu 21 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn

log3x2+ y2+ x + log2

x2+ y2

≤ log3x+ log2

x2+ y2+ 24x

?

Câu 22 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z+ 2i| = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 23 Có bao nhiêu số nguyên x thỏa mãn log3 x2−16

343 < log7 x2−16

27 ?

Câu 24 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

Câu 25 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n1 = (−1; 1; 1) B.→−n3 = (1; 1; 1) C.→−n2 = (1; −1; 1) D.→−n4 = (1; 1; −1)

Câu 26 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

3πr2l D πrl.

Trang 3

Câu 27 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16

16π

16

16π

9 .

Câu 28 Tập nghiệm của bất phương trình 2x +1< 4 là

Câu 29 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng

3

Câu 30 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 31 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′= ln3

′ = 1

′ = − 1

′ = 1

x.

Câu 32 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?

A.R f(x)= −sinx + x2

2 + C

Câu 33 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 34 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|

A max |z|= 4 B max |z|= 3 C max |z|= 6 D max |z|= 7

Câu 35 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện

−2 − 3i

3 − 2i z+ 1

= 1

A max |z|= 1 B max |z|= 3 C max |z|= √2 D max |z|= 2

Câu 36 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là

Câu 37 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z

và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′ là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1

2 ⇔ x= 9

2 ⇔ z= 9

2 −

9

2i|z+ 4i − 5|

A. √1

4

1

2

5.

Câu 38 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu

Câu 39 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là

A Đường tròn B Một đường thẳng C Hai đường thẳng D Parabol.

Câu 40 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b

Câu 41 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là

A w= 1 + √27 hoặcw= 1 − √27 B w= −√27 − i hoặcw= −√27+ i

C w= 1 + √27i hoặcw= 1 − √27i D w= √27 − i hoặcw= √27+ i

Trang 4

Câu 42 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′

là điểm biểu diễn của số phức z′ = 1+ i

trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′

A S = 15

4 .

Câu 43 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b

2x+ C Khi đó giá trị a + b là:

Câu 44 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng

(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α

A. 1

√ 5

√ 15

√ 15

5 .

Câu 45 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)

Câu 46 Cho biểu thức P= (ln a + logae)2+ ln2

a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 47 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Câu 48 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình

x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0

Câu 49 Cho m= log23; n= log52 Tính log22250 theo m, n

A log22250= 2mn+ n + 3

C log22250= 2mn+ n + 2

Câu 50 Chọn mệnh đề đúng trong các mệnh đề sau:

A.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

B.

3

R

1

|x2− 2x|dx = −R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

C.

3

R

1

|x2− 2x|dx =R2

1

|x2− 2x|dx −

3 R

2

|x2− 2x|dx

D.

3

R

1

|x2− 2x|dx =R2

1 (x2− 2x)dx −

3 R

2 (x2− 2x)dx

Trang 5

HẾT

Ngày đăng: 10/04/2023, 10:26

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm