LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′
; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1
V2
A. V1
V2 = 1
V1
V2 = 1
V1
V2 = 1
3.
Câu 2 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20
Câu 3 Tìm nghiệm của phương trình 2x = (√3)x
Câu 4 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 5 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′
A. a
√
3
a
√ 2
a
√ 3
√ 3
Câu 6 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z
Giá trị của biểu thức A = xy + yz + zxbằng?
Câu 7 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt
A [7
4;+∞)
D (7
4; 2]S[22;+∞)
Câu 8 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′
A. a
3
a3
a3
a3
4.
Câu 9 Cho hàm số y = f (x) có đạo hàm f′
(x)= x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng
Câu 10 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt
phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD
Câu 11 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ
Câu 12 Cho cấp số nhân (un) với u1 = −1
2; u7 = −32 Tìm q?
A q= ±1
Câu 13 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là
A (−∞; −3] ∪ [3; +∞) B (−∞; 3] C [−3; 3] D (0; 3].
Trang 2Câu 14 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?
A y= x3− 3x2+ 2 B y= −x3+ 3x2+ 2 C y= x4− 2x2+ 2 D y= −x4+ 2x2+ 2
Câu 15 Thể tích khối lập phương có cạnh 3a là:
Câu 16 Tập nghiệm của bất phương trình log3(10 − 3x+1) ≥ 1 − x chứa mấy số nguyên
Câu 17 Cho hàm số f (x)= cos x + x Khẳng định nào dưới đây đúng?
A.R f(x)dx= sin x + x2+ C B. R f(x)dx= − sin x + x2+ C
C.R f(x)dx= − sin x + x2
2 + C
Câu 18 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′(x) bằng
Câu 19 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 20 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
Câu 21 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Câu 22 Xét các số phức z thỏa mãnz2− 3 − 4i= 2|z| Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z| Giá trị của M2+ m2bằng
Câu 23 NếuR4
−1 f(x)dx= 2 và R−14 g(x)dx= 3 thì R−14[ f (x)+ g(x)]dx bằng
Câu 24 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z+ 2i| = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 25 Tích tất cả các nghiệm của phương trình ln2x+ 2 ln x − 3 = 0 bằng
Câu 26 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
11
3 .
Câu 27 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 28 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 29 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
A. 1
Câu 30 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n2 = (1; −1; 1) B.→−n3 = (1; 1; 1) C.→−n1 = (−1; 1; 1) D.→−n4 = (1; 1; −1)
Trang 3Câu 31 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng
Câu 32 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π
3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
A. 5
√
√ 2
Câu 33 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình bên.
Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 34 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là
Câu 35 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là
A Một đường thẳng B Đường tròn C Hai đường thẳng D Parabol.
Câu 36 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu
Câu 37 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường tròn Tính bán kính r của đường tròn đó
Câu 38 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là
Câu 39 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5
C (x+ 1)2+ (y − 2)2 = 125 D (x − 5)2+ (y − 4)2= 125
Câu 40 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
−2 − 3i
3 − 2i z+ 1
= 1
A max |z|= 1 B max |z|= 3 C max |z|= 2 D max |z|= √2
Câu 41 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|
A |z|= 50 B |z|= √33 C |z|= √10 D |z|= 5√2
Câu 42 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
Câu 43 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính M+ m
Câu 44 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x= −1; x = 2
A. 29
23
27
25
4 .
Câu 45 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax > ay ⇔ x< y B Nếu a > 1 thì ax > ay ⇔ x> y
C Nếu a > 0 thì ax = ay ⇔ x= y D Nếu a < 1 thì ax > ay ⇔ x< y
Trang 4Câu 46 Hàm số nào trong các hàm số sau đồng biến trên R.
C y= 4x+ 1
Câu 47 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
B D = (1; +∞)
C D = (−∞; −1] ∪ (1; +∞)
D D = (−∞; 0)
Câu 48 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m > 1 B m > 1 hoặc m < −1
3 C m > 2 hoặc m < −1 D m < −2.
Câu 49 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b
2x+ C Khi đó giá trị a + b là:
Câu 50 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 500π
√
3
400π√3
250π√3
125π√3
Trang 5HẾT