1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (800)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông Mễ Nhiêu
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 - 2023
Thành phố Mễ Nhiêu
Định dạng
Số trang 4
Dung lượng 125,31 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hình hộp ABCD A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuôn[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Cho hình hộp ABCD.A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′ lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′

A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′

D′theo a

Câu 2 Cho lăng trụ đều ABC.A

B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:

Câu 3 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một

điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN

để tứ giác ABCD là hình thoi Tọa độ điểm C là:

A C(20; 15; 7) B C(6; 21; 21) C C(6; −17; 21) D C(8;21

2 ; 19).

Câu 4 Công thức nào sai?

Câu 5 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R

A m > 2 B m > 2e C m > e2 D m ≥ e−2

Câu 6 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

Câu 7 Cho hình lập phương ABCD.A′B′C′D′ Tính góc giữa hai đường thẳng AC và BC′

Câu 8 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?

Câu 9 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn

z1

2

+

z2

2

= 5

Câu 10 Cho hàm số y = f (x) xác định trên tập R và có f′

(x) = x2− 5x+ 4 Khẳng định nào sau đây đúng?

A Hàm số đã cho nghịch biến trên khoảng (3;+∞)

B Hàm số đã cho nghịch biến trên khoảng (1; 4).

C Hàm số đã cho đồng biến trên khoảng (1; 4).

D Hàm số đã cho đồng biến trên khoảng (−∞; 3).

Câu 11 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2

d2 : x −4

−2 Gọi mặt phẳng (P) là chứa d1và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng

A. √1

3

5.

Trang 2

Câu 12 Cho hai số phức u, v thỏa mãn

u =

v = 10 và

3u − 4v

= 50 Tìm giá trị lớn nhất của biểu thức

4u+ 3v − 8 + 6i

Câu 13 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là

A.→−n = (1; −2; 3) B.→−n = (1; −2; −1) C.→−n = (1; 2; 3) D.→−n = (1; 3; −2)

Câu 14 Cho hàm số y= f (x) có bảng biến thiên như sau

Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?

Câu 15 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB= a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng

3

3

3 .

Câu 16 Cho hàm số f (x) liên tục trên R và

2

R

0

( f (x)+ 2x) = 5 TínhR2

0

f(x)

Câu 17 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 18 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 19 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 20 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 21 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= √34 B |z|= 5

√ 34

√ 34

Câu 22 Cho số phức z thỏa mãn z= 4(−3+ i)

1 − 2i + (3 − i)2

−i Mô-đun của số phức w= z − iz + 1 là

A |w|= 6√3 B |w|= 4√5 C |w|= √48 D |w|= √85

Câu 23 Những số nào sau đây vừa là số thực và vừa là số ảo?

A C.Truehỉ có số 0 B Không có số nào C Chỉ có số 1 D 0 và 1.

Câu 24 Số phức z= 1+ i

1 − i

!2016

+ 1 − i

1+ i

!2018

bằng

Câu 25 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= √13 B |z1+ z2|= 1 C |z1+ z2|= 5 D |z1+ z2|= √5

Câu 26 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 27 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

5 .

Trang 3

Câu 28 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn

z1

+

z2

= 2?

Câu 29 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R02 f(2x) bằng

A. 3

3

Câu 30 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′

(x) bằng

A. 4

1

5

1

2.

Câu 31 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (−1; −2; −3) B (1; −2; 3) C (1; 2; −3) D (−1; 2; 3).

Câu 32 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1

3x − 1 là đường thẳng có phương trình:

A y= −1

3.

Câu 33 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= lnx B F′(x)= 2

(x)= −1

x2

Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P=

|z|2− 22 B P=

|z|2− 42 C P = (|z| − 2)2 D P = (|z| − 4)2

Câu 35 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 36 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 37 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A Phần thực của z là số âm B |z|= 1

C z là một số thực không dương D z là số thuần ảo.

Câu 38 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 39 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A. 1

√ 2

1

2.

Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Trang 4

Câu 41 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2

√ 2

3 . B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8

3.

Câu 42 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

3

Câu 43 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là

A C3

Câu 44 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?

Câu 45 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD= a

3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và

BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)

Câu 46 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?

A y= −x4+ 2x2+ 2 B y= x4− 2x2+ 2 C y= −x3+ 3x2+ 2 D y= x3− 3x2+ 2

Câu 47 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần

lượt được các hình tròn xoay có thể tích là 672π, 3136π

9408π

13 .Tính diện tích tam giác ABC.

Câu 48 Cho hàm số y= f (x) có bảng biến thiên như sau :

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 49 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (−2; 3; 1) B.→−n = (2; −3; 4) C.→−n = (−2; 3; 4) D.→−n = (2; 3; −4)

Câu 50 Thể tích khối lập phương có cạnh 3a là:

HẾT

Ngày đăng: 10/04/2023, 09:00