1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (702)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông Mễ Nhiêu
Chuyên ngành Toán học
Thể loại Đề kiểm tra
Năm xuất bản 2022 - 2023
Thành phố Mễ Nhiêu
Định dạng
Số trang 4
Dung lượng 124,44 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2;−3;−1), N(2;−1; 1) Tìm tọa đ[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc

trục tung sao cho tam giác MNEcân tại E

A (−2; 0; 0) B (0; 2; 0) C (0; 6; 0) D (0; −2; 0).

Câu 2 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng

Câu 3 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2

A m ∈ (−1; 2) B m ≥ 0 C −1 < m < 7

2. D m ∈ (0; 2).

Câu 4 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại

Câu 5 Cho lăng trụ đều ABC.A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′

A.

5a

2a

a

√ 3a

2 .

Câu 6 Hàm số nào sau đây đồng biến trên R?

A y= √x2+ x + 1 − √x2− x+ 1 B y= x2

Câu 7 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được

A Đường parabol B Đường hypebol C Đường tròn D Đường elip.

Câu 8 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?

C y= 3x+ 1

Câu 9 Cho hàm số f (x)=

− 1

3x

2(2m+ 3)x2− (m2+ 3m)x +2

3

Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?

Câu 10 Cho hàm số y = f (x) xác định trên tập R và có f′

(x) = x2− 5x+ 4 Khẳng định nào sau đây đúng?

A Hàm số đã cho nghịch biến trên khoảng (1; 4).

B Hàm số đã cho nghịch biến trên khoảng (3;+∞)

C Hàm số đã cho đồng biến trên khoảng (1; 4).

D Hàm số đã cho đồng biến trên khoảng (−∞; 3).

Câu 11 Cho hàm số y = f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng

Câu 12 Cho hàm số y= f (x) có đồ thị của y = f′(3 − 2x) như hình vẽ sau:

Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (

x3+ 2021x

+ m)

có ít nhất 5 điểm cực trị?

Trang 2

Câu 13 Cho số phức zthỏa mãn

z

i+ 2 = 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)

Câu 14 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính

e 2

R

1

f(ln x)

Câu 15 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng

Câu 16 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng

x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1= 4S2 thì giá trị k thuộc khoảng nào sau đây?

A (3, 7; 3, 9)· B (3, 1; 3, 3)· C (3, 3; 3, 5)· D (3, 5; 3, 7)·.

Câu 17 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là

A −1 ≤ m ≤ 0 B m ≥ 1 hoặc m ≤ 0 C m ≥ 0 hoặc m ≤ −1 D 0 ≤ m ≤ 1.

Câu 18 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 19 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 20 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số phức B Mô-đun của số phức z là số thực không âm.

C Mô-đun của số phức z là số thực dương D Mô-đun của số phức z là số thực.

Câu 21 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A. 11

11

29

29

13.

Câu 22 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?

A z · z = a2− b2 B |z2|= |z|2 C z+ z = 2bi D z − z= 2a

Câu 23 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= √34 B |z|=

√ 34

√ 34

Câu 24 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 25 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là −3 và phần ảo là−2 B Phần thực là 3 và phần ảo là 2i.

C Phần thực là3 và phần ảo là 2 D Phần thực là−3 và phần ảo là −2i.

Câu 26 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)

Khoảng cách từ B đến mặt phẳng (S CD) bằng

√ 2

2√3

√ 3

3 a.

Câu 27 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= lnx B F′(x)= −1

x2 C F′(x)= 1

x2

Trang 3

Câu 28 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)

Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 29 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

A. 24

24.

Câu 30 Cho hàm số y = f (x) có đạo hàm f′

(x)= (x − 2)2

(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 31 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là

A (−2; −4; −6) B (−1; −2; −3) C (1; 2; 3) D (2; 4; 6).

Câu 32 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 33 Xét các số phức z thỏa mãn

z2− 3 − 4i

= 2 z

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của

z

Giá trị của M2+ m2bằng

Câu 34 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 4 B |z|= 1

Câu 35 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

2.

Câu 36 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

√ 3

√ 2

2 .

Câu 37 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A z là một số thực không dương B Phần thực của z là số âm.

Câu 38 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 39 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 2√5 B P= −2016 C P = 1 D P = 2016

Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Trang 4

Câu 41 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A. 1

√ 2

1

5.

Câu 42 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A 2 < |z| < 5

5

2 < |z| < 7

3

2 < |z| < 2 D. 1

2 < |z| < 3

2.

Câu 43 Cho số phức z= (1 + i)2

(1+ 2i) Số phức z có phần ảo là

Câu 44 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (2; 3; −4) B.→−n = (2; −3; 4) C.→−n = (−2; 3; 4) D.→−n = (−2; 3; 1)

Câu 45 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M

Câu 46 Cho hàm số có bảng biến thiên:

Khẳng định nào sau đây là đúng?

A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại

C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại

Câu 47 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng

Câu 48 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho

3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất

A M(−3

4;

3

3

4;

1

3

4;

1

3

4;

1

2; −1).

Câu 49 Tập nghiệm của bất phương trình log3(10 − 3x +1) ≥ 1 − x chứa mấy số nguyên.

Câu 50 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng

HẾT

Ngày đăng: 10/04/2023, 08:47