Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2 + x +[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm
số y= 3x2+ log3x+ m là:
Câu 2 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:
A VS.ABC =
√ 3a2b
√ 3ab2
12 .
C VS.ABC = a2
√ 3b2− a2
2
q
b2− √3a2
Câu 3 Cho lăng trụ đều ABC.A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′
A. √2a
a
√
√ 5a
√ 3a
2 .
Câu 4 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R
A m > 2e B m > e2 C m ≥ e−2 D m > 2.
Câu 5 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?
Câu 6 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)
và trục tung có tọa độ là
A (0; 5; 0) B (0; −5; 0) C (0; 0; 5) D (0; 1; 0).
Câu 7 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?
A log x > log y B log 1
a
x> log1
a
y C ln x > ln y D logax> logay
Câu 8 Cho hàm số y= ax+ b
cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?
A bc > 0 B ac < 0 C ad > 0 D ab < 0
Câu 9 Cho cấp số nhân (un) với u1 = 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là
Câu 10 Cho hàm số y = f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng
Câu 11 Cho số phức zthỏa mãn
z
i+ 2
= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)
Câu 12 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng
x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1 = 4S2thì giá trị k thuộc khoảng nào sau đây?
A (3, 3; 3, 5)· B (3, 7; 3, 9)· C (3, 5; 3, 7)· D (3, 1; 3, 3)·.
Câu 13 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là
A.→−n = (1; 3; −2) B.→−n = (1; 2; 3) C.→−n = (1; −2; −1) D.→−n = (1; −2; 3)
Trang 2Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2+ (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?
A (P) cắt mặt cầu (S ) B (P) không cắt mặt cầu (S ).
C (P) tiếp xúc mặt cầu (S ) D (P) đi qua tâm mặt cầu (S ).
Câu 15 Tính thể tích V của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2và trục hoành quanh trục Ox
A V = 4
2 .
Câu 16 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB= a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng
3
a3
3.
Câu 17 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 18 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?
Câu 19 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 20 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là −3 và phần ảo là−2 B Phần thực là3 và phần ảo là 2.
C Phần thực là−3 và phần ảo là −2i D Phần thực là 3 và phần ảo là 2i.
Câu 21 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 22 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= 21009i B (1+ i)2018 = −21009i C (1+ i)2018 = 21009 D (1+ i)2018 = −21009
Câu 23 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2
A |z1+ z2|= √13 B |z1+ z2|= 1 C |z1+ z2|= √5 D |z1+ z2|= 5
Câu 24 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 25 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2
z1
là
Câu 26 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) và tọa độ
trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là:
A C(−1; −4; 4) B C(1; 0; 2) C C(−1; 0; −2) D C(1; 4; 4).
Câu 27 Cho f (x) là hàm số liên tục trên [a; b] (với a < b ) và F(x) là một nguyên hàm của f (x) trên
[a; b] Mệnh đề nào dưới đây đúng?
A.Rba f(x)= F(b) − F(a)
B. Rb
a k · f(x)= k[F(b) − F(a)]
C.Rb
a f(2x+ 3) = F(2x + 3)
b
a
D Diện tích S của hình phẳng giới hạn bởi hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) và trục hoành được tính theo công thức S = F(b) − F(a)
Câu 28 Tìm hàm số F(x) không là nguyên hàm của hàm số f (x)= sin2x
A F(x) = −cos2x B F(x) = −cos2x C F(x)= −1
2cos2x. D F(x)= sin2x
Trang 3Câu 29 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e.
A F(x)= ex+ 1 B F(x)= ex +1. C F(x) = e2x D F(x)= ex
Câu 30 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là
A (3; 3; −1) B (3; 1; 1) C (−1; −1; −3) D (1; 1; 3).
Câu 31 Hàm số y= F(x) là một nguyên hàm của hàm số y = f (x) Hãy chọn khẳng định đúng
A F′(x)+ C = f (x) B F′(x)= f (x) C F(x) = f′(x)+ C D F(x)= f′(x)
Câu 32 Mệnh đề nào sau đây sai?
A.R f′(x)= f (x) + C với mọi hàm số f (x) có đạo hàm liên tục trên R
B. R k f(x)= k R f (x) với mọi hằng số k và với mọi hàm số f (x) liên tục trên R
C.R( f (x) − g(x)) = R f (x) − R g(x), với mọi hàm số f (x); g(x) liên tục trên R
D.R( f (x)+ g(x)) = R f (x) + R g(x), với mọi hàm số f (x); g(x) liên tục trên R
Câu 33 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′
(x)= 2x + 1 Giá trị f (2) − f (1) bằng
Câu 34 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 35 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
A. 1
3
2.
Câu 36 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 37 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2
√ 2
3 .
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
Câu 38 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
A. √1
2
√ 2
√ 2
Câu 39 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
√ 3
√ 2
Câu 40 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
2.
Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 42 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Trang 4Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Câu 44 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích
toàn phầnSt pcủa hình nón (N) bằng
A St p = πRh + πR2 B St p = 2πRl + 2πR2 C St p = πRl + 2πR2 D St p = πRl + πR2
Câu 45 Chọn mệnh đề đúng trong các mệnh đề sau:
dx = (2x+ 1)3
C.R e2xdx=e2x
Câu 46 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b
2x+ C Khi đó giá trị a + b là:
Câu 47 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau
Câu 48 Cho biểu thức P= (ln a + logae)2+ ln2a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
Câu 49 Hàm số nào trong các hàm số sau đồng biến trên R.
C y= 4x+ 1
Câu 50 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
Trang 5HẾT