Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ c[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại
Câu 2 Hàm số nào sau đây không có cực trị?
Câu 3 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?
Câu 4 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?
A |→−u | = 3
B |→−u |= √3 C |→−u |= 9 D |→−u |= 1
Câu 5 Cho hình lập phương ABCD.A′
B′C′D′ Tính góc giữa hai đường thẳng AC và BC′
Câu 6 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
Câu 7 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1
x là đúng?
A Hàm số đồng biến trên R B Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)
C Hàm số nghịch biến trên (0;+∞) D Hàm số nghịch biến trên R.
Câu 8 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?
A M′
(−2; −3; −1) B M′
(2; 3; 1)
Câu 9 Cho hàm số y= f (x) có bảng biến thiên như sau
Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?
Câu 10 Cho số phức zthỏa mãn
z
i+ 2
= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)
Câu 11 Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât Hoi co bao nhiêu cach phân công khac
nhau
10
Câu 12 Cho hàm số f (x) liên tục trên R và
2
R
0
( f (x)+ 2x) = 5 TínhR2
0
f(x)
Câu 13 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?
Câu 14 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là
A.→−n = (1; −2; 3) B.→−n = (1; 3; −2) C.→−n = (1; 2; 3) D.→−n = (1; −2; −1)
Trang 2Câu 15 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?
A y= 2x − 2
−2x+ 3
x+ 1.
Câu 16 Cho hàm số y = f (x) xác định trên tập R và có f′
(x) = x2 − 5x+ 4 Khẳng định nào sau đây đúng?
A Hàm số đã cho đồng biến trên khoảng (1; 4).
B Hàm số đã cho nghịch biến trên khoảng (3;+∞)
C Hàm số đã cho nghịch biến trên khoảng (1; 4).
D Hàm số đã cho đồng biến trên khoảng (−∞; 3).
Câu 17 Với mọi số phức z, ta có |z+ 1|2bằng
A |z|2+ 2|z| + 1 B z+ z + 1 C z · z+ z + z + 1 D z2+ 2z + 1
Câu 18 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 19 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 20 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 21 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 22 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 23 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 24 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A |z2|= |z|2 B z − z = 2a C z+ z = 2bi D z · z= a2− b2
Câu 25 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 26 ChoR3
a x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?
A (0;1
1
Câu 27 Mệnh đề nào sau đây sai?
A.R( f (x) − g(x))= R f (x) − R g(x), với mọi hàm số f (x); g(x) liên tục trên R
B. R k f(x)= k R f (x) với mọi hằng số k và với mọi hàm số f (x) liên tục trên R
C.R f′(x)= f (x) + C với mọi hàm số f (x) có đạo hàm liên tục trên R
D.R( f (x)+ g(x)) = R f (x) + R g(x), với mọi hàm số f (x); g(x) liên tục trên R
Câu 28 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là
A (x+ 2)2+ y2+ z2= 3 B (x+ 2)2+ y2+ z2 = 9
C (x − 2)2+ y2+ z2= 9 D (x − 2)2+ y2+ z2 = 3
Câu 29 Tìm nguyên hàm I = R xcosxdx
2 + C
C I = x2cosx
Câu 30 Hàm số f (x) thoả mãn f′
(x)= xx là:
A (x+ 1)x+ C B x2+ x+1
x+ 1 + C. C (x − 1)x+ C. D x2 x+ C.
Trang 3Câu 31 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e.
A F(x)= ex
B F(x)= ex +1. C F(x) = e2x D F(x)= ex+ 1
Câu 32 Phương trình mặt phẳng đi qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n= (−2; 1; −1) là
A 2x + y − z − 4 = 0 B −2x + y − z + 4 = 0 C −2x + y − z − 4 = 0 D −2x + y − z + 1 = 0.
Câu 33 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương
trình
C x − 2y+ 2z + 15 = 0 D x+ 2y + 2z + 15 = 0
Câu 34 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1
+ 1
z2
= 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
3√2
Câu 35 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 3
√ 6
√ 2
√ 2
√ 5
5 .
Câu 36 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 37 Cho số phức z thỏa mãn1 −
√ 5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 3
2 < |z| < 3 B. 5
2 < |z| < 4 C 3 < |z| < 5 D. 1
2 < |z| < 2
Câu 38 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
A P=
√
2
√ 3
2 .
Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 40 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
Câu 41 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 43 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x
sin x+ 2 cos x và F(−
π
2)= π Khi đó giá trị
F(0) bằng:
A. 1
5ln 2+ 6π
5 . B ln 2+ 6π
1
4ln 2+ 3π
6π
5 .
Trang 4Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên
đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M
A M(7
3;
10
3 ;
31
4
3;
10
3 ;
16
5
3;
11
3 ;
17
2
3;
7
3;
21
3 ).
Câu 45 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Câu 46 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây
Câu 47 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 48 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R
A m > −2 B −3 ≤ m ≤ 0 C −4 ≤ m ≤ −1 D m < 0.
Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0
A (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 3
C (x − 1)2+ (y − 2)2+ (z − 4)2 = 2 D (x − 1)2+ (y + 2)2+ (z − 4)2= 1
Câu 50 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Trang 5HẾT