Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai? A aloga x = x B l[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?
A alogax = x B loga(x − 2)2 = 2loga(x − 2)
C loga2x= 1
2= 2logax
Câu 2 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng
Câu 3 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?
Câu 4 Cho lăng trụ đều ABC.A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′
A.
√
5a
√ 3a
2a
√
a
√
5.
Câu 5 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
Câu 6 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3
2, ((ℵ) có đỉnh thuộc (S ) và đáy
là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất
√ 3π
√
3.
Câu 7 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R
A m > 2e B m ≥ e−2 C m > e2 D m > 2.
Câu 8 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3+ 6x2+ mx − 2 đi qua điểm (11;1)?
Câu 9 Cho hàm số f (x)=
− 1
3x
3+ 1
2(2m+ 3)x2− (m2+ 3m)x +2
3
Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?
Câu 10 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x ≥ log5(x+ y2)?
Câu 11 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2
−1 = x −1
A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là
A (10
2 ; −
4
3;
5
2
3; −
4
3;
5
8
3; −
2
3;
7
3). D (2 ; −3 ; 1).
Câu 12 Tính thể tích V của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2 và trục hoành quanh trục Ox
A V = 22π
15 .
Trang 2Câu 13 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng
Câu 14 Cho số phức z1= 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng
Câu 15 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là
A.→−n = (1; 2; 3) B.→−n = (1; −2; 3) C.→−n = (1; −2; −1) D.→−n = (1; 3; −2)
Câu 16 Cho hàm số f (x) liên tục trên R và
2 R
0
( f (x)+ 2x) = 5 TínhR2
0
f(x)
Câu 17 Số phức z= 1+ i
1 − i
!2016 + 1 − i
1+ i
!2018 bằng
Câu 18 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2
A |z1+ z2|= 1 B |z1+ z2|= 5 C |z1+ z2|= √5 D |z1+ z2|= √13
Câu 19 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là3 và phần ảo là 2 B Phần thực là 3 và phần ảo là 2i.
C Phần thực là−3 và phần ảo là −2i D Phần thực là −3 và phần ảo là−2.
Câu 20 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
Câu 21 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?
Câu 22 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 23 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 24 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là
Câu 25 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 26 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng
(ABC) có phương trình là
A x − y+ z + 6 = 0 B x+ y − z − 3 = 0 C 6x + y − z − 6 = 0 D x + y − z + 1 = 0.
Câu 27 Nguyên hàmR 1+ lnx
x dx(x > 0) bằng
A x+ ln2x+ C B ln2x+ lnx + C C x+ 1
2ln
2x+ C D. 1
2ln
2x+ lnx + C
Câu 28 F(x) là một nguyên hàm của hàm số y= xex 2
Hàm số nào sau đây không phải là F(x)?
A F(x) = 1
2(e
x 2
+ 5) B F(x) = 1
2e
x 2
+ 2 C F(x)= −1
2(2 − e
x 2
) D F(x)= −1
2e
x 2
+ C
Câu 29 ChoR1
0 f(x)= 2R v `a R1
0 g(x)= 5 R01[ f (x) − 2g(x)] bằng
Câu 30 Tích phân I = R2
0 (2x − 1) có giá trị bằng:
Trang 3Câu 31 Cho hàm số f (x) liên tục trên R và 04 f(x)= 10, R4
3 f(x)= 4 Tích phân R3
0 f(x) bằng
Câu 32 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e
A F(x)= ex +1. B F(x)= ex
C F(x) = e2x D F(x)= ex+ 1
Câu 33 Hàm số f (x) thoả mãn f′(x)= xxlà:
A (x+ 1)x+ C B x2 x+ C C x2+ x+1
x+ 1 + C. D (x − 1)x+ C.
Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 0;1
4
!
2;
9 4
!
4;
5 4
!
4;+∞
!
Câu 35 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 36 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 3
2 < |z| < 2 B. 1
2 < |z| < 3
5
2 < |z| < 7
2. D 2 < |z| <
5
2.
Câu 37 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 2
√
85
√ 97
Câu 38 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
A P=
√
2
√ 3
Câu 39 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 40 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 3
2. B |w|min= 1
2. C |w|min = 1 D |w|min = 2
Câu 41 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A. 3
1
1
2 < |z| < 3
2.
Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P=
|z|2− 22 B P= (|z| − 2)2 C P = (|z| − 4)2 D P =
|z|2− 42
Câu 43 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng
A. πa2√
17
πa2√ 17
πa2√ 17
πa2√ 15
Câu 44 Chọn mệnh đề đúng trong các mệnh đề sau:
A.R 5xdx=5x+ C B. R (2x+ 1)2dx= (2x+ 1)3
2 + C
Trang 4Câu 45 Cho biểu thức P= (ln a + logae)2+ ln2
a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
Câu 46 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 47 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x
sin x+ 2 cos x và F(−
π
2)= π Khi đó giá trị F(0) bằng:
A. 1
5ln 2+ 6π
6π
1
4ln 2+ 3π
2 . D ln 2+ 6π
5 .
Câu 48 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= −x4+ 2x2 B y= −x4+ 2x2+ 8 C y= x3− 3x2
D y= −2x4+ 4x2
Câu 49 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây
Câu 50 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600
Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Trang 5HẾT