Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai? A loga2 x = 1 2 l[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?
A loga2x= 1
logax = x
C loga(x − 2)2 = 2loga(x − 2) D logax2= 2logax
Câu 2 Cho lăng trụ đều ABC.A′
B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′
A.
√
5a
a
√
√ 3a
2a
√
5.
Câu 3 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?
Câu 4 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?
Câu 5 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?
A M′(−2; 3; 1) B M′(−2; −3; −1) C M′(2; −3; −1) D M′(2; 3; 1)
Câu 6 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:
A y= x
5 ln 5−
1
5 ln 5 + 1
C y= x
5 ln 5− 1+ 1
5 ln 5 + 1 − 1
ln 5.
Câu 7 Cho hình hộp ABCD.A′
B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′ lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′
A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′
D′theo a
Câu 8 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A. √5
a< √5
√
2> b√2
Câu 9 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là
Câu 10 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính
e 2
R
1
f(ln x)
Câu 11 Nếu
6 R
1
f(x)= 2 vàR6
1
g(x)= −4 thìR6
1 ( f (x)+ g(x)) bằng
Câu 12 Đạo hàm của hàm số y= (2x + 1)−
1
3 trên tập xác định là
A 2(2x+ 1)−
1
3(2x+ 1)−
4
3
C (2x+ 1)−
1
3(2x+ 1)−
4
3
Trang 2Câu 13 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên.
Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?
Câu 14 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn
z1
2 + z2
2
= 5
Câu 15 Cho khối lăng trụ đứng ABC.A′B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 3
3 a Tính thể tích của khối lăng trụ ABC.A
′
B′C′
A. a
3
a3
a3√2
a3√2
Câu 16 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) và mặt phẳng (P) : 2x+2y−z+9 = 0 Đường thẳng d đi qua A và có vectơ chỉ phương ⃗u = (3; 4; −4) cắt (P) tại B Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới góc 90o Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau?
A J(−3; 2; 7) B K(3; 0; 15) C H(−2; −1; 3) D I(−1; −2; 3).
Câu 17 Với mọi số phức z, ta có |z+ 1|2bằng
A z+ z + 1 B |z|2+ 2|z| + 1 C z · z+ z + z + 1 D z2+ 2z + 1
Câu 18 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2 z1
là
Câu 19 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A m ≥ 1 hoặc m ≤ 0 B m ≥ 0 hoặc m ≤ −1 C −1 ≤ m ≤ 0 D 0 ≤ m ≤ 1.
Câu 20 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 21 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 22 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 23 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 24 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 25 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= −21009 B (1+ i)2018 = −21009i C (1+ i)2018 = 21009i D (1+ i)2018 = 21009
Câu 26 Tìm hàm số F(x) không là nguyên hàm của hàm số f (x)= sin2x
A F(x) = −1
2cos2x. B F(x) = −cos2x C F(x)= sin2x D F(x)= −cos2x
Câu 27 Hàm số f (x) thoả mãn f′(x)= xx là:
A (x+ 1)x+ C B x2 x+ C C x2+ x+1
x+ 1 + C. D (x − 1)x+ C.
Câu 28 Hàm số y= F(x) là một nguyên hàm của hàm số y = f (x) Hãy chọn khẳng định đúng
A F(x) = f′
(x)+ C B F′(x)= f (x) C F′(x)+ C = f (x) D F(x)= f′
(x)
Trang 3Câu 29 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là
A (x − 2)2+ y2+ z2 = 9 B (x − 2)2+ y2+ z2 = 3
C (x+ 2)2+ y2+ z2 = 3 D (x+ 2)2+ y2+ z2 = 9
Câu 30 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là
A (−1; −1; −3) B (3; 1; 1) C (1; 1; 3) D (3; 3; −1).
Câu 31 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương
trình
Câu 32 ChoR1
0 f(x)= 2Rv `a R1
0 g(x)= 5 R1
0 [ f (x) − 2g(x)] bằng
Câu 33 ChoR3
a x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?
A (0;1
1
Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 0;1
4
!
2;
9 4
!
4;+∞
!
4;
5 4
!
Câu 35 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 3
2 < |z| < 2 B. 5
2 < |z| < 7
2. C 2 < |z| <
5
1
2 < |z| < 3
2.
Câu 36 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 37 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 38 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 39 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 40 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 41 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A 3 < |z| < 5 B. 5
2 < |z| < 4 C. 1
2 < |z| < 2 D. 3
2 < |z| < 3
Trang 4Câu 42 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 43 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0
Câu 44 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= −x4+ 2x2 B y= −2x4+ 4x2 C y= −x4+ 2x2+ 8 D y= x3− 3x2
Câu 45 Cho biểu thức P= (ln a + logae)2+ ln2
a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
Câu 46 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m < −2 B m > 1 C m > 1 hoặc m < −1
3 D m > 2 hoặc m < −1.
Câu 47 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
6.
Câu 48 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A.
√
15
1
√ 15
√ 5
3 .
Câu 49 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD
Câu 50 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
Trang 5HẾT