1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (599)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 125,46 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P) z[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?

C x= 5 + 2ty = 5 + tz = 2 − 4t D x= 3 + 2ty = 4 + tz = 6

Câu 2 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc

tơ pháp tuyến của (P) là

A (2; −1; 2) B (−2; 1; 2) C (2; −1; −2) D (−2; −1; 2).

Câu 3 Cho lăng trụ đều ABC.A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′

A.

3a

√ 5a

2a

a

5.

Câu 4 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3

2, ((ℵ) có đỉnh thuộc (S ) và đáy

là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất

√ 3π

3.

Câu 5 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng

Câu 6 Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = 3+ 2x

x+ 1 tại hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?

A ∀m ∈ R B 1 < m , 4 C m < 3

2. D −4 < m < 1.

Câu 7 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =

x3+ 6x2+ mx − 2 đi qua điểm (11;1)?

Câu 8 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm

số y= 3x2+ log3x+ m là:

Câu 9 Cho hàm số f (x) liên tục trên R và

2

R

0

( f (x)+ 2x) = 5 TínhR2

0

f(x)

Câu 10 Cho cấp số nhân (un) với u1 = 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là

Câu 11 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là

Câu 12 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng

Trang 2

Câu 13 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng

x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1= 4S2 thì giá trị k thuộc khoảng nào sau đây?

A (3, 5; 3, 7)· B (3, 1; 3, 3)· C (3, 7; 3, 9)· D (3, 3; 3, 5)·.

Câu 14 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?

A y= 1+ x

−2x+ 3

x+ 1.

Câu 15 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng

2.

Câu 16 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng

Câu 17 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 18 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 19 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 20 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 21 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực B Mô-đun của số phức z là số thực không âm.

C Mô-đun của số phức z là số thực dương D Mô-đun của số phức z là số phức.

Câu 22 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 23 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2

z1

Câu 24 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗

Hỏi đâu là phương án đúng?

Câu 25 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là

Câu 26 Tính tích phân I = R2

1 xexdx

Câu 27 BiếtR18 f(x)= −2; R4

1 f(x)= 3; R4

1 g(x)= 7 Mệnh đề nào sau đây sai?

C.R4

4 f(x)= −5

Câu 28 Cho f (x) là hàm số liên tục trên [a; b] (với a < b ) và F(x) là một nguyên hàm của f (x) trên

[a; b] Mệnh đề nào dưới đây đúng?

A.Ra

b f(x)= F(b) − F(a)

B Diện tích S của hình phẳng giới hạn bởi hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) và trục hoành được tính theo công thức S = F(b) − F(a)

Trang 3

a f(2x+ 3) = F(2x + 3)

a

D.Rb

a k · f(x)= k[F(b) − F(a)]

Câu 29 Phương trình mặt phẳng đi qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n= (−2; 1; −1) là

A −2x + y − z − 4 = 0 B −2x + y − z + 4 = 0 C −2x + y − z + 1 = 0 D 2x + y − z − 4 = 0.

Câu 30 Cho hàm số f (x) liên tục trên khoảng (−2; 3) Gọi F(x) là một nguyên hàm của f (x) trên khoảng

(−2; 3) Tính I = R−12[ f (x)+ 2x], biết F(−1) = 1 và F(2) = 4

Câu 31 Cho hàm số f (x) có đạo hàm trên đoạn [−1; 2] và f (−1)= 2023, f (2) = −1 Tích phân R2

−1 f′(x) bằng:

Câu 32 Họ nguyên hàm của hàm số f (x)= cosx + sinx là

A F(x)= sinx − cosx + C B F(x)= −sinx − cosx + C

C F(x)= −sinx + cosx + C D F(x)= sinx + cosx + C

Câu 33 Hàm số F(x)= sin(2023x) là nguyên hàm của hàm số

2023cos(2023x).

C f (x)= −2023cos(2023x) D f (x)= 2023cos(2023x)

Câu 34 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 4

√ 5

√ 2

√ 2

√ 6

2 .

Câu 35 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

√ 3

√ 2

2 .

Câu 36 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P=

|z|2− 22 B P= (|z| − 4)2 C P =

|z|2− 42 D P = (|z| − 2)2

Câu 38 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 39 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 40 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 1

2 < |z| < 2 B 3 < |z| < 5 C. 3

2 < |z| < 3 D. 5

2 < |z| < 4

Câu 41 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8

3.

Trang 4

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2

√ 2

3 .

Câu 42 Cho a, b, c là các số thực và z= −1

2 +

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

Câu 43 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.

A y= −2x4+ 4x2 B y= −x4+ 2x2+ 8 C y= −x4+ 2x2 D y= x3− 3x2

Câu 44 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh

của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng

A. πa2√

17

πa2√ 17

πa2√ 17

πa2√ 15

Câu 45 Cho m= log23; n= log52 Tính log22250 theo m, n

A log22250= 2mn+ n + 2

C log22250= 2mn+ n + 3

Câu 46 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu

A. 400π

3

125π√3

250π√3

500π√3

Câu 47 Cho P= 2a

4b8c, chọn mệnh đề đúng trong các mệnh đề sau

Câu 48 Chọn mệnh đề đúng trong các mệnh đề sau:

A.

3

R

1

|x2− 2x|dx =R2

1

|x2− 2x|dx −

3

R

2

|x2− 2x|dx

B.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx −

3

R

2

(x2− 2x)dx

C.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx+R3

2

(x2− 2x)dx

D.

3

R

1

|x2− 2x|dx = −R2

1

(x2− 2x)dx+R3

2

(x2− 2x)dx

Câu 49 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích

toàn phầnSt pcủa hình nón (N) bằng

A St p = πRl + 2πR2 B St p = 2πRl + 2πR2 C St p = πRl + πR2 D St p = πRh + πR2

Câu 50 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng

x= −1; x = 2

A. 25

27

29

23

4 .

Trang 5

HẾT

Ngày đăng: 10/04/2023, 07:50

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN