1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đê ôn thptqg 4 (56)

13 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thptqg 4 (56)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán Học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 13
Dung lượng 152,51 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho hàm số y = x3 + 3x2 Mệnh đề nào sau đây là đúng? A Hàm số nghịch biến trên các khoảng (−∞;−2) và (0;+∞[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

B Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

D Hàm số nghịch biến trên khoảng (−2; 1).

Câu 2. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 3ac

3b+ 2ac

3b+ 2ac

c+ 2 .

Câu 3. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

log2a. B log2a= 1

loga2. C log2a= − loga2 D log2a= loga2

Câu 4. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 5. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√3

a√6

a√6

3 .

Câu 6. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 7. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối 12 mặt đều B Khối lập phương C Khối bát diện đều D Khối tứ diện đều.

Câu 8. Tính lim

x→1

x3− 1

x −1

Câu 9. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

Câu 10. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

15

a3

√ 15

a3

a3

√ 5

25 .

Câu 11. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

3 C V = 3a3

√ 3

2 . D V = a3

√ 3

2 .

Câu 12. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Trang 2

Câu 13. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

58

3a√38

3a

a√38

29 .

Câu 14. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. a

3√

3

4a3√3

8a3√3

8a3√3

9 .

Câu 15. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 16 Hình nào trong các hình sau đây không là khối đa diện?

Câu 17. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3

2a3√3

4a3√3

a3

6 .

Câu 18. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số mặt của khối chóp.

B Số cạnh của khối chóp bằng số mặt của khối chóp.

C Số đỉnh của khối chóp bằng số cạnh của khối chóp.

D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

Câu 19. Tìm giới hạn lim2n+ 1

n+ 1

Câu 20. [1] Tính lim 1 − n

2 2n2+ 1 bằng?

A. 1

1

1

Câu 21. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 22. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 23. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 24. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 25. Dãy số nào sau đây có giới hạn là 0?

A. −5

3

!n

e

!n

3

!n

3

!n

Trang 3

Câu 26. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 27. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A.

√ 17

17 .

Câu 28. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 29. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 30. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

B F(x)= G(x) trên khoảng (a; b)

C Cả ba câu trên đều sai.

D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

Câu 31. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3

a3√3

3√

3√ 3

3 .

Câu 32. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Hai khối chóp tứ giác.

B Hai khối chóp tam giác.

C Một khối chóp tam giác, một khối chóp ngữ giác.

D Một khối chóp tam giác, một khối chóp tứ giác.

Câu 33. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B −2 < m < −1 C (−∞; −2] ∪ [−1; +∞) D −2 ≤ m ≤ −1.

Câu 34. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 35 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 36. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 2

a3√ 3

3√ 3

Trang 4

Câu 37. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|.

Câu 38. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 39. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

A 3 − 4

√ 2

Câu 40. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

2; 3

!

"

2;5 2

!

Câu 41. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

A. 3

Câu 42. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Năm tứ diện đều.

B Năm hình chóp tam giác đều, không có tứ diện đều.

C Một tứ diện đều và bốn hình chóp tam giác đều.

D Bốn tứ diện đều và một hình chóp tam giác đều.

Câu 43. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 44. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai câu trên đúng D Cả hai câu trên sai.

Câu 45. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 46. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 47. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

Câu 48. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1 B M= e, m = 0 C M = 1

e, m = 0 D M = e, m = 1

e.

Trang 5

Câu 49. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

A. 1

ln 2

2 .

Câu 50. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A.

3

1

3

2.

Câu 51. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 52. [4] Xét hàm số f (t)= 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 53. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có f0(x)= F(x)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ [a; b], ta có F0(x)= f (x)

D Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

Câu 54. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 1

ln 10. B f

0 (0)= 10 C f0(0)= ln 10 D f0(0)= 1

Câu 55. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 1

2

e3

Câu 56. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

5

#

"

−2

3;+∞

!

3

# D. " 2

5;+∞

!

Câu 57. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 58. Tính giới hạn lim2n+ 1

3n+ 2

A. 2

1

3

Câu 59. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 60. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 61. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≤ 1

1

1

1

4.

Câu 62 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

Trang 6

Câu 63. Khối đa diện đều loại {3; 3} có số mặt

Câu 64. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 65. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 9 cạnh, 5 mặt B 6 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 5 đỉnh, 9 cạnh, 6 mặt.

Câu 66. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 67. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A 2

√ 6

Câu 68. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 2

5n − 3n2 B un = n2− 3n

n2 C un = 1 − 2n

5n+ n2 D un = n2+ n + 1

(n+ 1)2

Câu 69. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

Câu 70. Khối đa diện đều loại {3; 5} có số cạnh

Câu 71. Khối chóp ngũ giác có số cạnh là

Câu 72. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 73. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 74. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 75. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 76. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

Câu 77. Khối đa diện đều loại {3; 5} có số mặt

Trang 7

Câu 78. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60 Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

3√

3

a3√ 3

2a3√ 3

4a3√ 3

3 .

Câu 79. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

2

a2+ b2 B. √ 1

a2+ b2 C. √ ab

a2+ b2 D. ab

a2+ b2

Câu 80. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 3

a3√ 3

a3√ 2

12 .

Câu 81. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 82. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

A. 1

Câu 83. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

Câu 84. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

A 8

√ 2

Câu 85. [1] Tính lim1 − 2n

3n+ 1 bằng?

A. 2

2

1

Câu 86. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

5

23

9

25.

Câu 87. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 88. Dãy số nào có giới hạn bằng 0?

A un= −2

3

!n B un = n3− 3n

n+ 1 . C un = 6

5

!n D un = n2− 4n

Câu 89. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 90. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 91. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Trang 8

Câu 92. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

A. 1

3.

Câu 93. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 94. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 95. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 96. [1] Tập xác định của hàm số y= 4x 2 +x−2là

A. D = [2; 1] B. D = R \ {1; 2} C. D = R D. D = (−2; 1)

Câu 97. Cho hàm số y= 3 sin x − 4 sin3

x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 98 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 20 triệu đồng B 3, 03 triệu đồng C 2, 22 triệu đồng D 2, 25 triệu đồng.

Câu 99. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 100. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 101. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 102. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 8 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.

Câu 103. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 104. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 105 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx B.

Z

f(x)g(x)dx=Z f(x)dx

Z g(x)dx

C.

Z

( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx D.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0

Câu 106. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 log 2x

x3 B y0 = 1 − 4 ln 2x

2x3ln 10 . C y

0 = 1 − 2 ln 2x

x3ln 10 . D y

2x3ln 10.

Trang 9

Câu 107. Khối đa diện đều loại {4; 3} có số cạnh

Câu 108. Khối đa diện đều loại {3; 4} có số mặt

Câu 109. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng số cạnh của khối chóp.

B Số mặt của khối chóp bằng 2n+1.

C Số cạnh của khối chóp bằng 2n.

D Số đỉnh của khối chóp bằng 2n+ 1

Câu 110. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

3.

Câu 111. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

3√ 6

4a3

√ 6

2a3

√ 6

3 .

Câu 112. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 113. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = 4 +2

e. B T = e + 2

e. C T = e + 1 D T = e + 3

Câu 114. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√ 3

a3√ 3

a3√ 3

36 .

Câu 115. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 116. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1 thỏa mãn |z1− 2 − i| = 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1gần giá trị nào nhất?

Câu 117. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

A Không có câu nào

sai

Câu 118. [1] Biết log6 √a= 2 thì log6abằng

Trang 10

Câu 119. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối lập phương.

Câu 120. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 121. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 122. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A. 2

2

Câu 123. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 124. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 125. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y

A Pmin= 9

11+ 19

9 . B Pmin = 18

11 − 29

21 C Pmin = 9

11 − 19

9 . D Pmin= 2

11 − 3

Câu 126. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

26 .

Câu 127. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 log 2x

x3 B y0 = 1 − 2 ln 2x

x3ln 10 . C y

0 = 1 − 4 ln 2x 2x3ln 10 . D y

2x3ln 10.

Câu 128. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 129. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Tăng lên (n − 1) lần B Giảm đi n lần C Tăng lên n lần D Không thay đổi.

Ngày đăng: 09/04/2023, 22:28

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN