1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đê ôn thptqg 2 (625)

12 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thptqg 2 (625)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán Học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 151,67 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Giá trị cực đại của hàm số y = x3 − 3x + 4 là A 2 B −1 C 6 D 1 Câu 2 [3 1211h] Cho khối chóp đều S ABC có[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 2. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

15

a3

√ 15

a3

√ 5

a3

3 .

Câu 3. Hàm số f có nguyên hàm trên K nếu

Câu 4. [1] Tập xác định của hàm số y= 2x−1 là

A. D = R \ {0} B. D = (0; +∞) C. D = R \ {1} D. D = R

Câu 5. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD= 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A a3

3√ 2

a3√ 3

a3√ 2

4 .

Câu 6. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±√2 B m= ±3 C m= ±√3 D m= ±1

Câu 7. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 8. Biểu thức nào sau đây không có nghĩa

A. −3

√ 2)0

Câu 9. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y= (x2− 3)extrên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 10. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối bát diện đều D Khối lập phương.

Câu 11. Tính lim

x→3

x2− 9

x −3

Câu 12. Khối đa diện đều loại {3; 4} có số mặt

Câu 13. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là −3, phần ảo là −4 B Phần thực là 3, phần ảo là −4.

C Phần thực là −3, phần ảo là 4 D Phần thực là 3, phần ảo là 4.

Câu 14. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 15. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A 8

√ 3

14√3

3 .

Trang 2

Câu 16. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

A (−∞; 0) và (1; +∞) B (−∞; −1) và (0; +∞) C (0; 1) D (−1; 0).

Câu 17. Tính lim 5

n+ 3

Câu 18. Tìm m để hàm số y= x3

− 3mx2+ 3m2

có 2 điểm cực trị

Câu 19. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 20. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 21. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

√ 3

a

a

3.

Câu 22. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 23. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 24. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

b2+ c2

a2+ b2+ c2 B. c

a2+ b2

a2+ b2+ c2 C. b

a2+ c2

a2+ b2+ c2 D. abc

b2+ c2

a2+ b2+ c2

Câu 25. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 26. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3

3√ 3

a3√ 3

2 .

Câu 27. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 28. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 29. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 30. Dãy số nào có giới hạn bằng 0?

A un= n2− 4n B un = −2

3

!n C un = 6

5

!n D un = n3− 3n

n+ 1 .

Câu 31. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Trang 3

Câu 32. Dãy số nào sau đây có giới hạn là 0?

A un= 1 − 2n

5n+ n2 B un = n2− 3n

n2 C un = n2− 2

5n − 3n2 D un = n2+ n + 1

(n+ 1)2

Câu 33. Khối lập phương thuộc loại

Câu 34. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

A (+∞; −∞) B [1;+∞) C (−∞; 1] D [3;+∞)

Câu 35 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

B Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

C Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

Câu 36. [12212d] Số nghiệm của phương trình 2x−3.3x−2

− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 37. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 38. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. 2a

3√

3

4a3√3

a3

a3

6 .

Câu 39. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 4035

2017

2016

2017.

Câu 40 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aα+β= aα.aβ

α

aβ = aα C aαbα = (ab)α

D aαβ = (aα

Câu 41. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A F(x)= G(x) trên khoảng (a; b)

B Cả ba câu trên đều sai.

C G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

Câu 42. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 43. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 44. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2] ∪ [−1; +∞) B (−∞; −2)∪(−1; +∞) C −2 < m < −1 D −2 ≤ m ≤ −1.

Trang 4

Câu 45 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx B.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0

C.

Z

( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx D.

Z

f(x)g(x)dx=

Z

f(x)dx

Z g(x)dx

Câu 46. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A. 1

√ 5

Câu 47. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 48. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A. " 5

2; 3

!

"

2;5 2

!

Câu 49. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 50. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 51. Tính limcos n+ sin n

n2+ 1

Câu 52. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A. a

6

√ 6

Câu 53. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

A 1+ 2 sin 2x B −1+ 2 sin 2x C 1 − sin 2x D −1+ sin x cos x

Câu 54. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 20 mặt đều B Khối 12 mặt đều C Khối bát diện đều D Khối tứ diện đều.

Câu 55. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4 − 2e. B m= 1+ 2e

4e+ 2. C m=

1 − 2e 4e+ 2. D m=

1+ 2e

4 − 2e.

Câu 56. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 4 đỉnh, 8 cạnh, 4 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 6 đỉnh, 6 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.

Câu 57. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 9

11+ 19

9 . B Pmin = 2

11 − 3

3 . C Pmin = 9

11 − 19

9 . D Pmin= 18

11 − 29

21 .

Câu 58. Khối đa diện đều loại {3; 5} có số cạnh

Câu 59. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 4a

3√

3

8a3√3

a3√3

8a3√3

9 .

Trang 5

Câu 60. Dãy số nào sau đây có giới hạn khác 0?

A. √1

n+ 1

1

sin n

n .

Câu 61. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

Câu 62. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 63. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

Câu 64. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 65. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3√

3

a3√3

3

3 .

Câu 66. Dãy số nào sau đây có giới hạn là 0?

A. 5

3

!n

e

!n

3

!n

3

!n

Câu 67 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 3, 03 triệu đồng B 2, 20 triệu đồng C 2, 25 triệu đồng D 2, 22 triệu đồng.

Câu 68. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 69. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 70. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 71. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)+ g(x)] = a + b B lim

x→ +∞

f(x) g(x) = a

b.

C lim

x→ +∞[ f (x) − g(x)]= a − b D lim

x→ +∞[ f (x)g(x)]= ab

Câu 72. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Trang 6

Câu 73. [2] Tập xác định của hàm số y= (x − 1) là

A. D = R B. D = (−∞; 1) C. D = R \ {1} D. D = (1; +∞)

Câu 74. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 3S h B V = 1

2S h. C V = 1

3S h. D V = S h

Câu 75. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có f0(x)= F(x)

B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

C Với mọi x ∈ [a; b], ta có F0(x)= f (x)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 76. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 1

3

√ 3

Câu 77. Tính lim

x→1

x3− 1

x −1

Câu 78. [1] Giá trị của biểu thức log √31

10 bằng

A −1

1

Câu 79. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 B. √ 1

a2+ b2 C. ab

a2+ b2 D. √ ab

a2+ b2

Câu 80. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3abằng

A −1

1

Câu 81. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 5

Câu 82. Tính lim n −1

n2+ 2

Câu 83. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 84. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 85. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

e.

Câu 86. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Trang 7

Câu 87. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A a

√ 57

2a√57

a√57

19 .

Câu 88. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 89. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là

2 − 1, phần ảo là −

2, phần ảo là 1 −

√ 3

C Phần thực là 1 −

2, phần ảo là −

2 − 1, phần ảo là

√ 3

Câu 90. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√3

a√6

a√6

2 .

Câu 91. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 92. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

Câu 93. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

1

2.

Câu 94. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 95 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

B Cả ba đáp án trên.

C F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

D Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

Câu 96. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

3

9

4.

Câu 97. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 98. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A. " 2

5;+∞

!

"

−2

3;+∞

!

5

#

3

#

Câu 99. Tứ diện đều thuộc loại

Câu 100. Xác định phần ảo của số phức z= (√2+ 3i)2

Trang 8

Câu 101. [4-1214h] Cho khối lăng trụ ABC.A BC , khoảng cách từ C đến đường thẳng BB bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và

3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

√ 3

Câu 102. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 103. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp ngữ giác.

B Hai khối chóp tam giác.

C Một khối chóp tam giác, một khối chóp tứ giác.

D Hai khối chóp tứ giác.

Câu 104. [4-1244d] Trong tất cả các số phức z= a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A − 5

23

9

13

100.

Câu 105. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

2.

Câu 106. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh của khối chóp bằng 2n.

B Số mặt của khối chóp bằng 2n+1.

C Số đỉnh của khối chóp bằng 2n+ 1

D Số mặt của khối chóp bằng số cạnh của khối chóp.

Câu 107. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 108. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

3

a3

12.

Câu 109. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

4.

Câu 110. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trang 9

Trong hai câu trên

A Cả hai câu trên sai B Cả hai câu trên đúng C Chỉ có (II) đúng D Chỉ có (I) đúng.

Câu 111. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 112. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. 2a

a

a√2

a

3.

Câu 113. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 114. Điểm cực đại của đồ thị hàm số y = 2x3

− 3x2− 2 là

Câu 115. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 116. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 2 log 2x

x3 C y0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 − 4 ln 2x 2x3ln 10 .

Câu 117. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

A 3

Câu 118. [1] Tính lim 1 − n

2 2n2+ 1 bằng?

A. 1

1

1

2.

Câu 119. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 120. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

√ 3

2 e

π

√ 2

2 e

π

2e

π

3

Câu 121. Cho

Z 1 0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

2.

Câu 122. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3 .

Câu 123. Tìm m để hàm số y= x4

− 2(m+ 1)x2

− 3 có 3 cực trị

Câu 124. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Trang 10

Câu 125. Bát diện đều thuộc loại

Câu 126. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

A. 5

7

Câu 127. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

A.

√ 5

Câu 128. Khẳng định nào sau đây đúng?

A Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

B Hình lăng trụ tứ giác đều là hình lập phương.

C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

D Hình lăng trụ đứng là hình lăng trụ đều.

Câu 129 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C B.

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C

C.

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số D.

Z

f(x)dx

!0

= f (x)

Câu 130. Tính lim

x→5

x2− 12x+ 35

25 − 5x

5.

HẾT

Ngày đăng: 09/04/2023, 22:10

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN