Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim 2n − 3 2n2 + 3n + 1 bằng A −∞ B 1 C 0 D +∞ Câu 2 Cho hàm số y = x3 − 3x2 + 1 Tích giá trị cực đại[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 2. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 3. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln 2 B y0 = 2x ln x C y0 = 1
2x ln x. D y
0 = 1
ln 2.
Câu 4. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 5 Hình nào trong các hình sau đây không là khối đa diện?
Câu 6. Tính lim
x→1
x3− 1
x −1
Câu 7. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
2.
Câu 8. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng 1
3; 1
! B Hàm số nghịch biến trên khoảng 1
3; 1
!
C Hàm số nghịch biến trên khoảng −∞;1
3
! D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 9. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 10. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x)+ g(x)] = a + b B lim
x→ +∞
f(x) g(x) = a
b.
C lim
x→ +∞[ f (x) − g(x)]= a − b D lim
x→ +∞[ f (x)g(x)]= ab
Câu 11. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 12. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
4 < m < 0 D m > −5
4.
Câu 13. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 14. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Trang 2Câu 15 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 25 triệu đồng B 3, 03 triệu đồng C 2, 20 triệu đồng D 2, 22 triệu đồng.
Câu 16. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
Câu 17. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 18. Tìm giá trị nhỏ nhất của hàm số y= (x2
− 2x+ 3)2
− 7
Câu 19. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = ey
− 1 D xy0 = ey+ 1
Câu 20. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. √ ab
a2+ b2 C. ab
2
√
a2+ b2
Câu 21. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 22. Tính lim
x→ +∞
x −2
x+ 3
3.
Câu 23. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
2 .
Câu 24. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 25. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
A. " 5
2; 3
!
"
2;5 2
!
Câu 26. Khối đa diện đều loại {3; 4} có số cạnh
Câu 27. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 28. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
− 1 D xy0 = ey+ 1
Câu 29. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Trang 3Câu 30. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 31. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 32. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 33. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 34. Tìm m để hàm số y= x3
− 3mx2+ 3m2có 2 điểm cực trị
Câu 35. Khối chóp ngũ giác có số cạnh là
Câu 36. Cho I = Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 37. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 38. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A 2a
√
√ 2
√
√ 2
4 .
Câu 39. Tính giới hạn lim2n+ 1
3n+ 2
A. 3
1
2
3.
Câu 40. [1] Tính lim 1 − n
2 2n2+ 1 bằng?
A −1
1
1
3.
Câu 41. Dãy số nào sau đây có giới hạn khác 0?
A. √1
n+ 1
sin n
1
n.
Câu 42. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 43. Bát diện đều thuộc loại
Câu 44. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
3√ 3
3 .
Trang 4Câu 45. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 46. Tính limcos n+ sin n
n2+ 1
Câu 47. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 48. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
A 2
√
√
√ 6
Câu 49. [1] Đạo hàm của làm số y = log x là
A y0 = ln 10
0 = 1
0 = 1
xln 10. D.
1
10 ln x.
Câu 50. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
2
√
a2+ b2 B. √ ab
a2+ b2 C. ab
a2+ b2 D. √ 1
a2+ b2
Câu 51. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x+3trên đoạn [0; 2] là
Câu 52. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
2.
Câu 53. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x
lần lượt là
A 2
√
2 và 3 B 2 và 2
√
√
2 và 3 D 2 và 3.
Câu 54. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A 6
√
√ 3
√
√ 3
3 .
Câu 55. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.
Câu 56. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 3S h B V = 1
2S h. C V = 1
3S h. D V = S h
Câu 57 Mệnh đề nào sau đây sai?
A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
C.
Z
f(x)dx
!0
= f (x)
D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Trang 5Câu 58 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C B. Z f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C
C.
Z
f(x)dx
!0
Z
k f(x)dx= kZ f(x)dx, k là hằng số
Câu 59. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
9
2.
Câu 60. [2-c] Giá trị lớn nhất của hàm số y = xe−2x2 trên đoạn [1; 2] là
A. 1
1 2e3
Câu 61. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 18
√
11 − 29
21 B Pmin = 9
√
11 − 19
9 . C Pmin = 9
√
11+ 19
9 . D Pmin= 2
√
11 − 3
Câu 62. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
A. 4035
2016
2017
2018.
Câu 63. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 − 2 log 2x
x3 D y0 = 1 − 4 ln 2x
2x3ln 10 .
Câu 64. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. ln 2
1
Câu 65. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 ≤ m ≤ 9
3
3
Câu 66. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 67. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 6
2a3√ 6
a3√ 3
4 .
Câu 68. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 69. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√3
a√6
a√6
3 .
Câu 70. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. 2a
√
57
√
√ 57
a√57
17 .
Trang 6Câu 71. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 8 cạnh, 4 mặt B 6 đỉnh, 6 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 4 đỉnh, 6 cạnh, 4 mặt.
Câu 72. Tính lim 2n
2− 1 3n6+ n4
A. 2
Câu 73. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
A 1+ 2 sin 2x B −1+ 2 sin 2x C 1 − sin 2x D −1+ sin x cos x
Câu 74. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
Câu 75. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 76. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3] là M = m
en, trong đó n, m là các
số tự nhiên Tính S = m2+ 2n3
Câu 77. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 78. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
a3√3
a3√3
12 .
Câu 79. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 80. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3
√ 5
a3
√ 5
a3√3
12 .
Câu 81. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 82. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là √2, phần ảo là 1 −
√
3 B Phần thực là √2 − 1, phần ảo là −
√ 3
C Phần thực là 1 −
√
2, phần ảo là −
√
√
2 − 1, phần ảo là
√ 3
Câu 83. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3
√ 6
a3
√ 2
a3
√ 3
48 .
Câu 84. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Trang 7Câu 85. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A Cả ba câu trên đều sai.
B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
D F(x)= G(x) trên khoảng (a; b)
Câu 86. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối lập phương.
Câu 87 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
B F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
C.
Z
u0(x)
u(x)dx= log |u(x)| + C
D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
Câu 88. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a
√ 39
a
√ 39
a
√ 39
26 .
Câu 89. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. 2a
a√2
a
a
4.
Câu 90. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 91. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 92 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
f(x)g(x)dx=Z f(x)dx
Z
Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx
C.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0 D.
Z ( f (x) − g(x))dx=
Z
f(x)dx −
Z g(x)dx
Câu 93. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối lập phương B Khối tứ diện đều C Khối 12 mặt đều D Khối bát diện đều.
Câu 94. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. a
8a
5a
2a
9 .
Câu 95. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
a√2
√
√ 3
Trang 8Câu 96. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
2 .
Câu 97. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 98. Khối đa diện đều loại {3; 3} có số cạnh
Câu 99. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 100. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0 là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng vi khuẩn đạt 100.000 con?
Câu 101. Thể tích của khối lập phương có cạnh bằng a
√ 2
A V = a3√
√
3√ 2
3 .
Câu 102. Khối lập phương thuộc loại
Câu 103. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3√ 3
a3√ 6
a3√ 6
48 .
Câu 104. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
6 . B V = πa3
√ 3
3 . C V = πa3
√ 3
2 . D V = πa3
√ 6
6 .
Câu 105. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a√6
√
√ 6
6 .
Câu 106. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là −3, phần ảo là 4 B Phần thực là −3, phần ảo là −4.
C Phần thực là 3, phần ảo là −4 D Phần thực là 3, phần ảo là 4.
Câu 107. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A (−∞; 0) và (1; +∞) B (−∞; −1) và (0; +∞) C (−1; 0) D (0; 1).
Câu 108. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 109. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 110. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc
60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. a
3√
3
4a3√3
2a3√3
5a3√3
3 .
Trang 9Câu 111. Dãy số nào sau đây có giới hạn là 0?
A un= n2− 2
5n − 3n2 B un = 1 − 2n
5n+ n2 C un = n2− 3n
n2 D un = n2+ n + 1
(n+ 1)2
Câu 112. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số nghịch biến trên khoảng (0; 1).
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số đồng biến trên khoảng (1; 2).
Câu 113. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 114. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 115. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= − loga2 B log2a= 1
loga2. C log2a= 1
log2a. D log2a= loga2
Câu 116 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 117. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
1
4.
Câu 118. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±1 B m= ±√2 C m= ±√3 D m= ±3
Câu 119. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3
− 2x2+ 3x − 1
Câu 120. Dãy số nào có giới hạn bằng 0?
A un= −2
3
!n B un = 6
5
!n C un = n2
− 4n D un = n3− 3n
n+ 1 .
Câu 121. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
2.
Câu 122. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. " 2
5;+∞
!
5
#
3
#
"
−2
3;+∞
!
Câu 123. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. 11a
2
a2√7
a2√2
a2√5
16 .
Trang 10Câu 124. Giá trị cực đại của hàm số y = x3
− 3x+ 4 là
Câu 125. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
B Hàm số nghịch biến trên khoảng (−2; 1).
C Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 126. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −∞; −1
2
!
2
!
2;+∞
!
2;+∞
!
Câu 127. Cho
Z 2 1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 128. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. a
√
57
2a√57
a√57
√ 57
Câu 129. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
4.
Câu 130. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→af(x)= f (a)
C lim
x→a + f(x)= lim
x→a − f(x)= +∞ D f (x) có giới hạn hữu hạn khi x → a.
HẾT