Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Kết luận nào sau đây về tính đơn điệu của hàm số y = 1 x là đúng? A Hàm[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1
x là đúng?
A Hàm số nghịch biến trên R B Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)
C Hàm số nghịch biến trên (0;+∞) D Hàm số đồng biến trên R.
Câu 2 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?
A alogax = x B loga(x − 2)2 = 2loga(x − 2)
C logax2 = 2logax D loga2x= 1
2logax.
Câu 3 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A Đường hypebol B Đường tròn C Đường parabol D Đường elip.
Câu 4 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0
6 .
Câu 5 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?
A M′(2; −3; −1) B M′(2; 3; 1) C M′(−2; −3; −1) D M′(−2; 3; 1)
Câu 6 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3 Tìm F(
π
4)
A F(π
4)= π
4 + ln 2
2 . B F(
π
4)= π
3 −
ln 2
2 . C F(
π
4)= π
4 −
ln 2
2 . D F(
π
4)= π
3 + ln 2
2 .
Câu 7 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?
Câu 8 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?
Câu 9 Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài bằng a Tính diện tích
toàn phần St p của hình nón đó
A St p = πa2 B St p = 3
4πa2 C St p = 1
4πa2 D St p = 5
4πa2
Câu 10 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a
√ 2
2 Tính góc giữa mặt bên (S DC) và mặt đáy
Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?
A (P) không cắt mặt cầu (S ) B (P) cắt mặt cầu (S ).
C (P) tiếp xúc mặt cầu (S ) D (P) đi qua tâm mặt cầu (S ).
Câu 12 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?
A M(0 ; 0 ; 2) B Q(4 ; 4 ; 2) C N(1 ; 1 ; 7) D P(4 ; −1 ; 3).
Trang 2Câu 13 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là
A.→−n = (1; 3; −2) B.→−n = (1; −2; −1) C.→−n = (1; −2; 3) D.→−n = (1; 2; 3)
Câu 14 Bất phương trình log2021(x − 1) ≤ 0 có bao nhiêu nghiệm nguyên?
Câu 15 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB= a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng
3
3
3.
Câu 16 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng
(S BD) theo a
A. a
√
2
a
√
Câu 17 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A −11
29
29
11
13.
Câu 18 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 19 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= √48 B |w|= 4√5 C |w|= 6√3 D |w|= √85
Câu 20 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 21 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 22 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 23 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|= 34 B |z|= √34 C |z|= 5
√ 34
√ 34
3 .
Câu 24 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 25 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= 21009i B (1+ i)2018 = −21009i C (1+ i)2018 = −21009 D (1+ i)2018 = 21009
Câu 26 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (1; 2; 3) B (2; 4; 6) C (−2; −4; −6) D (−1; −2; −3).
Câu 27 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:
A y′ = π1xπ−1 B y′ = πxπ−1 C y′ = xπ−1 D y′ = πxπ
Câu 28 Trong không gian Oxyz, cho đường thẳng d : x −1
−1 = z+ 3
−2 Điểm nào dưới đây thuộc d?
A Q(1; 2; −3) B M(2; −1; −2) C N(2; 1; 2) D P(1; 2; 3).
Trang 3Câu 29 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên.
Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
Câu 30 Phần ảo của số phức z= 2 − 3i là
Câu 31 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+
y2+ 24x)?
Câu 32 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?
Câu 33 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n3= (1; 1; 1) B.→−n1 = (−1; 1; 1) C.→−n2 = (1; −1; 1) D.→−n4 = (1; 1; −1)
Câu 34 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 1 B |w|min= 1
2. C |w|min = 2 D |w|min = 3
2.
Câu 35 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 36 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
2;
9
4
!
4
!
4;+∞
!
4;
5 4
!
Câu 37 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8
3.
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 . D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
Câu 38 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
A |z|= 1
Câu 39 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 40 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
Câu 41 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|
Câu 42 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Trang 4Câu 43 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho
3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất
A M(−3
4;
3
3
4;
1
3
4;
1
3
4;
1
2; 2).
Câu 44 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng
Câu 45 Cho cấp số nhân (un) với u1= −1
2; u7= −32 Tìm q?
Câu 46 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là
Câu 47 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng
Câu 48 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
A x − 2y − 2z − 4= 0 B −x+ 2y + 2z + 4 = 0
C 3x − 4y+ 6z + 34 = 0 D x+ 2y + 2z + 8 = 0
Câu 49 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?
A V = 32π
5 .
Câu 50 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?
HẾT