TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 2. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
2.
C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 0
Câu 3. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 4. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= 1
log2a. B log2a= 1
loga2. C log2a= − loga2 D log2a= loga2
Câu 5. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3
√ 6
a3
√ 2
a3
√ 6
18 .
Câu 6. Khối đa diện đều loại {5; 3} có số cạnh
Câu 7. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 8. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
2.
Câu 9. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 10. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −1
2;+∞
!
2
!
2;+∞
!
2
!
Câu 11. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 12. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
3
a3
a3
24.
Trang 2Câu 13. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±√2 B m= ±1 C m= ±√3 D m= ±3
Câu 14. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 15. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 16. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối 20 mặt đều.
Câu 17. Tính lim
x→ +∞
x −2
x+ 3
Câu 18. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
A m < 0 ∨ m = 4 B m < 0 ∨ m > 4 C m < 0 D m ≤ 0.
Câu 19. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
4 < m < 0 C m > −5
Câu 20. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 21. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B Số cạnh của khối chóp bằng số mặt của khối chóp.
C Số đỉnh của khối chóp bằng số mặt của khối chóp.
D Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 22. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 23. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 24. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 25. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3] là M = m
en, trong đó n, m là các
số tự nhiên Tính S = m2+ 2n3
Câu 26. [2] Tổng các nghiệm của phương trình 3x−1.2x 2
= 8.4x−2là
Câu 27. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≥ 1
1
1
1
4.
Câu 28. Thập nhị diện đều (12 mặt đều) thuộc loại
Trang 3Câu 29. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 30. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 31. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Câu 32. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 20, 128 triệu đồng B 70, 128 triệu đồng C 50, 7 triệu đồng D 3, 5 triệu đồng.
Câu 33. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
3√ 3
a3√ 3
a3
3 .
Câu 34. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 35. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 36. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 37. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Câu 38. Tính lim
x→5
x2− 12x+ 35
25 − 5x
A −2
5.
Câu 39. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối 12 mặt đều C Khối bát diện đều D Khối lập phương.
Câu 40. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R \ {1} B. D = (−∞; 1) C. D = (1; +∞) D. D = R
Câu 41. [2] Đạo hàm của hàm số y = x ln x là
A y0 = x + ln x B y0 = ln x − 1 C y0 = 1 − ln x D y0 = 1 + ln x
Câu 42. Biểu thức nào sau đây không có nghĩa
Câu 43. Khối đa diện đều loại {5; 3} có số mặt
Trang 4Câu 44. [2] Cho hình lâp phương ABCD.A BC D cạnh a Khoảng cách từ C đến AC bằng
A. a
√
6
a√6
a√6
a√3
2 .
Câu 45. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 46. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 47. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 48. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 49. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
A. 1
Câu 50. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
A (+∞; −∞) B [1;+∞) C [3;+∞) D (−∞; 1].
Câu 51. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 52. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
A. 1
1
1
Câu 53. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 54. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 1
0 = 2x ln x C y0 = 1
2x ln x. D y
0 = 2x ln 2
Câu 55. Hàm số y= −x3+ 3x2
− 1 đồng biến trên khoảng nào dưới đây?
Câu 56. Tính lim
x→1
x3− 1
x −1
Câu 57. Dãy số nào sau đây có giới hạn khác 0?
A. sin n
1
√
n+ 1
1
n.
Câu 58. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. 11a
2
a2
√ 5
a2
√ 2
a2
√ 7
8 .
Câu 59. Hàm số y= x + 1
x có giá trị cực đại là
Trang 5Câu 60. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 61. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Năm tứ diện đều.
B Bốn tứ diện đều và một hình chóp tam giác đều.
C Năm hình chóp tam giác đều, không có tứ diện đều.
D Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 62. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
16 .
Câu 63. Tìm giới hạn lim2n+ 1
n+ 1
Câu 64 Mệnh đề nào sau đây sai?
A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D.
Z
f(x)dx
!0
= f (x)
Câu 65. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 66. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Trục ảo.
B Hai đường phân giác y= x và y = −x của các góc tọa độ
C Trục thực.
D Đường phân giác góc phần tư thứ nhất.
Câu 67. Khối lập phương thuộc loại
Câu 68. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 69. Khối đa diện đều loại {3; 5} có số cạnh
Câu 70. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 71. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 72. Thể tích của khối lập phương có cạnh bằng a
√ 2
A V = a3√
√
3√ 2
3 . D V = 2a3
Câu 73. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
A. 1
9
2
1
10.
Trang 6Câu 74. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i.
A |z| = √4
Câu 75. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
a
√ 2
√
Câu 76. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 77. [1] Biết log6 √a= 2 thì log6abằng
Câu 78 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Bát diện đều B Nhị thập diện đều C Tứ diện đều D Thập nhị diện đều.
Câu 79. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 1 B M= e, m = 0 C M = e, m = 1
e. D M = 1
e, m = 0
Câu 80. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 81. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A 2a
√
√
√ 2
a√2
2 .
Câu 82. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 83. Khối đa diện đều loại {3; 5} có số mặt
Câu 84. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0
A A0(−3; 3; 3) B A0(−3; −3; 3) C A0(−3; 3; 1) D A0(−3; −3; −3)
Câu 85. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3√5
a3√3
a3√5
4 .
Câu 86. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A a
√
√ 57
a√57
2a√57
19 .
Câu 87. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√3
a3√3
a3√3
24 .
Trang 7Câu 88. Điểm cực đại của đồ thị hàm số y = 2x3
− 3x2− 2 là
Câu 89. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 90. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 91 Phát biểu nào sau đây là sai?
A lim un= c (Với un = c là hằng số) B lim qn= 1 với |q| > 1
C lim 1
nk = 0 với k > 1 D lim √1
n = 0
Câu 92. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 93. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 94. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 4
√
3, 38 D 2, 4, 8.
Câu 95. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên sai B Cả hai câu trên đúng C Chỉ có (II) đúng D Chỉ có (I) đúng.
Câu 96. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
Câu 97. Cho
Z 1
0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
1
2.
Câu 98. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
6
a3√15
a3√5
3√ 6
Câu 99. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
b2+ c2
√
a2+ b2+ c2 B. c
√
a2+ b2
√
a2+ b2+ c2 C. abc
√
b2+ c2
√
a2+ b2+ c2 D. b
√
a2+ c2
√
a2+ b2+ c2
Trang 8Câu 100. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3
− mx2+ 3x + 4 đồng biến trên R
Câu 101. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
Câu 102. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 8a
3√
3
4a3
√ 3
8a3
√ 3
a3
√ 3
9 .
Câu 103. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 8a
2a
5a
a
9.
Câu 104. Khối đa diện đều loại {4; 3} có số cạnh
Câu 105. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 106 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 107. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
d: x+ 1
2 = y −5
2 = z
−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng
dđồng thời cách A một khoảng bé nhất
A ~u = (1; 0; 2) B ~u= (2; 2; −1) C ~u= (2; 1; 6) D ~u= (3; 4; −4)
Câu 108. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
3√
3√ 3
2a3
√ 3
3 .
Câu 109. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 110. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
2.
Câu 111. [1] Đạo hàm của làm số y = log x là
A y0 = 1
0 = ln 10
0 = 1
xln 10. D.
1
10 ln x.
Trang 9Câu 112. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
A. 27
Câu 113. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 114. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 9 lần B Tăng gấp 18 lần C Tăng gấp 27 lần D Tăng gấp 3 lần.
Câu 115. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 116. Dãy số nào sau đây có giới hạn là 0?
A un= n2+ n + 1
(n+ 1)2 B un = 1 − 2n
5n+ n2 C un = n2− 3n
n2 D un = n2− 2
5n − 3n2
Câu 117. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
A Phần thực là 4, phần ảo là 1 B Phần thực là −1, phần ảo là 4.
C Phần thực là 4, phần ảo là −1 D Phần thực là −1, phần ảo là −4.
Câu 118. Dãy số nào có giới hạn bằng 0?
A un= n3− 3n
n+ 1 . B un = n2− 4n C un = 6
5
!n D un = −2
3
!n
Câu 119. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 120. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
2
√
a2+ b2 B. √ 1
a2+ b2 C. √ ab
a2+ b2 D. ab
a2+ b2
Câu 121. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 122. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 123. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 ≤ m ≤ 3
3
9
4.
Câu 124. Hàm số nào sau đây không có cực trị
A y = x4− 2x+ 1 B y= x3− 3x C y= x −2
2x+ 1. D y= x +
1
x.
Câu 125. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 3ac
3b+ 2ac
3b+ 3ac
3b+ 2ac
c+ 2 .
Câu 126. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x) − g(x)]= a − b B lim
x→ +∞
f(x) g(x) = a
b.
C lim
x→ +∞[ f (x)+ g(x)] = a + b D lim
x→ +∞[ f (x)g(x)]= ab
Trang 10Câu 127 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
xαdx= α + 1xα+1 + C, C là hằng số B.
Z 1
xdx= ln |x| + C, C là hằng số
C.
Z
dx = x + C, C là hằng số D.
Z 0dx = C, C là hằng số
Câu 128. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A. a
√
6
√
√ 6
Câu 129. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 130. [1] Giá trị của biểu thức log √31
10 bằng
A −1
1
3.
HẾT