1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn toán thpt (681)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 155,4 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suấ[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 2. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

A lim un= 1

Câu 3. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 4. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

A |z| = √4

Câu 5. Tính lim

x→ +∞

x −2

x+ 3

Câu 6. Khối đa diện đều loại {5; 3} có số cạnh

Câu 7. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD= 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

3√

3√ 3

a3

√ 2

12 .

Câu 8. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y= (x2− 3)extrên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 9. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 10. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 11. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

A −1

1

3.

Câu 12. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

Câu 13. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối lập phương C Khối 12 mặt đều D Khối bát diện đều.

Trang 2

Câu 14. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 15. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4e+ 2. B m=

1 − 2e

4 − 2e. C m= 1 − 2e

4e+ 2. D m=

1+ 2e

4 − 2e.

Câu 16. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x +3trên đoạn [0; 2] là

Câu 17. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

Câu 18. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 19. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 20. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

A.

√ 10

Câu 21. Khẳng định nào sau đây đúng?

A Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

B Hình lăng trụ đứng là hình lăng trụ đều.

C Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

D Hình lăng trụ tứ giác đều là hình lập phương.

Câu 22. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 23. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 24. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≤ 1

1

1

1

4.

Câu 25. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 26. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 27. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Trang 3

Câu 28. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√ 6

a3√ 2

a3√ 6

6 .

Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 30. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 31. [1] Tập xác định của hàm số y= 4x2+x−2là

A. D = (−2; 1) B. D = R \ {1; 2} C. D = [2; 1] D. D = R

Câu 32. Tính giới hạn lim2n+ 1

3n+ 2

A. 2

3

1

2.

Câu 33. Khối chóp ngũ giác có số cạnh là

Câu 34. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 35. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 36. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 6

6 . B V = πa3

√ 3

2 . C V = πa3

√ 3

3 . D V = πa3

√ 3

6 .

Câu 37. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

Câu 38. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

Câu 39 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

D.

Z

u0(x)

u(x)dx= log |u(x)| + C

Câu 40. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối 20 mặt đều B Khối tứ diện đều C Khối 12 mặt đều D Khối bát diện đều.

Trang 4

Câu 41. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 42. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

3√

3√ 2

a3√3

2 .

Câu 43. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 2ac

3b+ 2ac

3b+ 3ac

c+ 1 .

Câu 44. [2] Tổng các nghiệm của phương trình 3x−1.2x 2

= 8.4x−2là

Câu 45. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

Câu 46. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.1, 03

3 triệu.

C m = (1, 01)3

(1, 01)3− 1 triệu. D m = 120.(1, 12)3

(1, 12)3− 1 triệu.

Câu 47. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 48. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 49. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

2 .

Câu 50. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {1} B. D = R C. D = R \ {0} D. D = (0; +∞)

Câu 51. Khối đa diện đều loại {4; 3} có số cạnh

Câu 52. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

3

a√6

a√6

a√6

2 .

Trang 5

Câu 53. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 54. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1

3x

3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng

√ 24

Câu 55. Hàm số nào sau đây không có cực trị

A y = x4− 2x+ 1 B y= x −2

2x+ 1. C y= x +

1

x. D y= x3− 3x

Câu 56. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và

3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

A. 2

3

Câu 57. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

Câu 58. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

A (+∞; −∞) B (−∞; 1] C [1;+∞) D [3;+∞)

Câu 59. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 60. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 61 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

B.

Z

[ f (x)+ g(x)]dx =

Z

f(x)dx+

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

C.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

D.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

Câu 62. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?

A y = logπ

2x

C y = log1 x D y = logaxtrong đó a= √3 − 2

Câu 63. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Trang 6

Câu 64. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey+ 1 B xy0 = ey

− 1 D xy0 = ey+ 1

Câu 65. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Bốn tứ diện đều và một hình chóp tam giác đều.

B Năm hình chóp tam giác đều, không có tứ diện đều.

C Năm tứ diện đều.

D Một tứ diện đều và bốn hình chóp tam giác đều.

Câu 66. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 67. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 68. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

4 < m < 0 D m > −5

4.

Câu 69. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 70. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 71. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 72. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

5

#

"

−2

3;+∞

!

3

# D. " 2

5;+∞

!

Câu 73. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 3

a3

√ 2

a3

√ 3

12 .

Câu 74. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A − 23

9

5

13

100.

Câu 75. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

3√

3

a3√ 3

3√

3√ 3

6 .

Câu 76. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 77. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√3

a3

a3√3

8 .

Trang 7

Câu 78. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

ln 10. C f

0 (0)= ln 10 D f0(0)= 10

Câu 79. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A a

√ 2

√ 2

2 .

Câu 80. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 81. [2] Đạo hàm của hàm số y = x ln x là

A y0 = 1 − ln x B y0 = x + ln x C y0 = ln x − 1 D y0 = 1 + ln x

Câu 82. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3

a3

2a3√3

4a3√3

3 .

Câu 83. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 84. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

6

a3√5

a3√15

3√ 6

Câu 85. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 86. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 87. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 88. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 89. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 90. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 91. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 92. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối lập phương D Khối bát diện đều.

Trang 8

Câu 93. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 94. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = a3

3

2 . B V = 3a3√

3 C V = 6a3 D V = 3a3

√ 3

2 .

Câu 95. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 70, 128 triệu đồng B 3, 5 triệu đồng C 50, 7 triệu đồng D 20, 128 triệu đồng.

Câu 96. [4] Xét hàm số f (t)= 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 97. Dãy số nào sau đây có giới hạn là 0?

A. 5

3

!n

3

!n

3

!n

e

!n

Câu 98. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 99. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√3

a3√5

a3√5

12 .

Câu 100. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 101. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 102. [2] Phương trình logx4 log2 5 − 12x

12x − 8

!

= 2 có bao nhiêu nghiệm thực?

Câu 103. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1

9

!x là

Câu 104. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 105. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tứ giác và một hình chóp ngũ giác.

B Hai hình chóp tứ giác.

C Một hình chóp tam giác và một hình chóp tứ giác.

D Hai hình chóp tam giác.

Trang 9

Câu 106. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 107. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 108. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

4035

2017

2018.

Câu 109. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

a2+ b2 B. ab

2

a2+ b2 D. √ 1

a2+ b2

Câu 110. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 111. Trong không gian cho hai điểm A, B cố định và độ dài AB= 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?

9

Câu 112. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. 11a

2

a2

√ 2

a2√7

a2

√ 5

16 .

Câu 113. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 114. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; 2) B Hàm số nghịch biến trên khoảng (0; 2).

C Hàm số đồng biến trên khoảng (0;+∞) D Hàm số đồng biến trên khoảng (0; 2).

Câu 115. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 116. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3) − √ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 117. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln x B y0 = 2x ln 2 C y0 = 1

2x ln x. D y

0 = 1

ln 2.

Câu 118. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 119. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi

M, N và P lần lượt là tâm của các mặt bên ABB0

A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

3

20√3

√ 3

Trang 10

Câu 120. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 log 2x

x3 B y0 = 1

2x3ln 10. C y

0 = 1 − 4 ln 2x 2x3ln 10 . D y

0 = 1 − 2 ln 2x

x3ln 10 .

Câu 121. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

9

Câu 122. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A. 1

1

1

2.

Câu 123. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 124. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 125. Bát diện đều thuộc loại

Câu 126. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

57

a

√ 57

a

√ 57

√ 57

Câu 127. Tính lim

x→−∞

x+ 1 6x − 2 bằng

1

1

6.

Câu 128. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y

A Pmin= 9

11+ 19

9 . B Pmin = 2

11 − 3

3 . C Pmin = 9

11 − 19

9 . D Pmin= 18

11 − 29

21 .

Câu 129. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 130. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi

qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u= (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

A.

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

B.

x= 1 + 7t

y= 1 + t

z= 1 + 5t

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

HẾT

Ngày đăng: 09/04/2023, 00:09

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN