1. Trang chủ
  2. » Luận Văn - Báo Cáo

Chuyên đề Bất phương trình bậc nhất một ẩn Toán 8

5 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bất phương trình bậc nhất một ẩn
Trường học Trường Trung Học Cơ Sở
Chuyên ngành Toán học
Thể loại Chuyên đề
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 106,86 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Vững vàng nền tảng, Khai sáng tương lai Chuyên đề BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN I Kiến thức cần nhớ 1 Định nghĩa Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥[.]

Trang 1

Chuyên đề

BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

I Kiến thức cần nhớ

1 Định nghĩa

Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥ 0 ) trong đó a và b là

hai số đã cho, a \ne 0 , được gọi là bất phương trình bậc nhất một ẩn.

Ví dụ:

Các bất phương trình bậc nhất một ẩn như: 2x + 3 > 0; 3 - x ≤ 0; x + 2 < 0; 4x + 7 ≥ 0;

2 Hai quy tắc biến đổi bất phương trình

a) Quy tắc chuyển vế

Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó

Ví dụ: Giải bất phương trình x - 3 < 4.

Hướng dẫn:

Ta có x - 3 < 4

⇔ x < 4 + 3 (chuyển vế - 3 và đổi dấu thành 3)

⇔ x < 7

Vậy tập nghiệm của bất phương trình là { x| x < 7 }

b) Quy tắc nhân với một số.

Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:

Giữ nguyên chiều bất phương trình nếu số đó dương

Đổi chiều bất phương trình nếu số đó âm

Ví dụ 1: Giải bất phương trình (x - 1)/3 ≥ 2.

Hướng dẫn:

Ta có: (x - 1)/3 ≥ 2

⇔ (x - 1)/3.3 ≥ 2.3 (nhân cả hai vế với 3)

⇔ x - 1 ≥ 6 ⇔ x ≥ 7

Vậy tập nghiệm của bất phương trình là { x| x ≥ 7 }

Ví dụ 2: Giải bất phương trình 1 - 2/3x ≤ - 1.

Hướng dẫn:

Ta có: 1 - 2/3x ≤ - 1 ⇔ - 2/3x ≤ - 2

⇔ - 2/3x.( - 3 ) ≥ ( - 2 )( - 3 ) (nhân cả hai vế với - 3 và đổi chiều)

⇔ 2x ≥ 6 ⇔ x ≥ 3

Vậy bất phương trình có tập nghiệm là { x| x ≥ 3 }

3 Giải bất phương trình một ẩn

Áp dụng hai quy tắc biến đổi trên, ta giải bất phương trình bậc nhất một ẩn như sau:

Dạng ax + b > 0 ⇔ ax > - b

Trang 2

⇔ x > - b/a nếu a > 0 hoặc x < - b/a nếu a < 0.

Vậy bất phương trình có tập nghiệm là

hoặc

Các dạng toán như ax + b < 0, ax + b ≤ 0, ax + b ≥ 0 tương tự như trên

Ví dụ 1: Giải bất phương trình 2x - 3 > 0

Hướng dẫn:

Ta có: 2x - 3 > 0

⇔ 2x > 3 (chuyển - 3 sang VP và đổi dấu)

⇔ 2x:2 > 3:2 (chia cả hai vế cho 2)

⇔ x > 3/2

Vậy bất phương trình đã cho có tập nghiệm là { x| x > 3/2 }

Ví dụ 2: Giải bất phương trình 2x - 1 ≤ 3x - 7

Hướng dẫn:

Ta có: 2x - 1 ≤ 3x - 7 ⇔ - 1 + 7 ≤ 3x - 2x

⇔ x ≥ 6

Vậy bất phương trình đã cho có tập nghiệm là { x| x ≥ 6 }

II Bài tập tự luyện

1 Bài tập trắc nghiệm

Bài 1: Tập nghiệm S của bất phương trình: 5x - 1 ≥ (2x)/5 + 3 là?

A. S = R

B. x > 2

C. x < -5/2

D. x ≥ 20/23;

Hướng dẫn giải

Ta có: 5x - 1 ≥ (2x)/5 + 3 ⇔ 25x - 5 ≥ 2x + 15 ⇔ 23x ≥ 20 ⇔ x ≥ 20/23

Vậy tập nghiệm của bất phương trình là x ≥ 20/23;

Chọn đáp án D.

Bài 2: Bất phương trình ( 2x - 1 )( x + 3 ) - 3x + 1 ≤ ( x - 1 )( x + 3 ) + x2 - 5 có tập nghiệm là?

A. x < - 2/3

B. x ≥ - 2/3

C. S = R

D. S = Ø

Trang 3

Hướng dẫn giải

Ta có: ( 2x - 1 )( x + 3 ) - 3x + 1 ≤ ( x - 1 )( x + 3 ) + x2 - 5

⇔ 2x2 + 5x - 3 - 3x + 1 ≤ x2 + 2x - 3 + x2 - 5 ⇔ 0x ≤ - 6

⇔ x ∈ Ø → S = Ø

Chọn đáp án D.

Bài 3: Giải bất phương trình : 2x + 4 < 16

A x > 6    

B x < 6

 C x < 8    

D x > 8

Hướng dẫn giải

Chọn đáp án B

Bài 4: Giải bất phương trình: 8x + 4 > 2(x+ 5)

A x > 2    

B x < -1

C x > -1    

D x > 1

Hướng dẫn giải

Ta có: 8x + 4 > 2( x +5 )

⇔ 8x + 4 > 2x + 10

⇔ 8x – 2x > 10 - 4

⇔ 6x > 6

⇔ x > 6 : 6

⇔ x > 1

Chọn đáp án D

Bài 5: Tìm m để x = 2 là nghiệm bất phương trình: mx + 2 < x + 3 + m

A m = 2    

B m < 3

C m > 1    

D m < - 3

Hướng dẫn giải

Do x = 2 là nghiệm của bất phương trình đã cho nên:

⇔ 2m + 2 < 2 + 3 + m

Trang 4

⇔ m < 3

Chọn đáp án B

2 Bài tập tự luận

Bài 1: Tìm tập nghiệm của các bất phương trình sau:

a) ( x + √ 3 )2 ≥ ( x - √ 3 )2 + 2

b) x + √ x < ( 2√ x + 3 )( √ x - 1 )

c) (x - 3)√(x - 2) ≥ 0

Hướng dẫn:

a) Ta có: ( x + √ 3 )2 ≥ ( x - √ 3 )2 + 2

⇔ x2 + 2√ 3 x + 3 ≥ x2 - 2√ 3 x + 3 + 2

⇔ 4√3x ≥ 2 ⇔ x ≥ √3/6

Vậy bất phương trình đã cho có tập nghiệm là S = [ √ 3 /6; + ∞ )

b) Ta có: x + √ x < ( 2√ x + 3 )( √ x - 1 )

Điều kiện: x ≥ 0

⇔ x + √ x < 2x - 2√ x + 3√ x - 3

⇔ - x < - 3 ⇔ x > 3

Kết hợp điều kiện, tập nghiệm bất phương trình là: x > 3

Vậy bất phương trình đã cho có tập nghiệm là x > 3

c) Ta có: (x - 3)√(x - 2) ≥ 0

Điều kiện: x ≥ 2

Bất phương trình tương đương là

Vậy tập nghiệm của bất phương trình là x = 2 hoặc x ≥ 3

Bài 2: Có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 - m )x < m vô nghiệm là?

Hướng dẫn:

Rõ ràng nếu m2 - m ≠ 0 ⇔  thì bất phương trình luôn có nghiệm

Với m = 0, bất phương trình trở thành 0x < 0: vô nghiệm

Với m = 1, bất phương trình trở thành 0x < 1: luôn đúng với mọi x ∈ R

Vậy với m = 0 thì bất phương trình trên vô nghiệm

Trang 5

Website HOC247 cung cấp một môi trường học trực tuyến sinh động, nhiều tiện ích thông minh, nội

dung bài giảng được biên soạn công phu và giảng dạy bởi những giáo viên nhiều năm kinh nghiệm, giỏi

về kiến thức chuyên môn lẫn kỹ năng sư phạm đến từ các trường Đại học và các trường chuyên danh

tiếng

I Luyện Thi Online

dựng các khóa luyện thi THPTQG các môn: Toán, Ngữ Văn, Tiếng Anh, Vật Lý, Hóa Học và Sinh Học

-Luyện thi vào lớp 10 chuyên Toán: Ôn thi HSG lớp 9 và luyện thi vào lớp 10 chuyên Toán các trường

PTNK, Chuyên HCM (LHP-TĐN-NTH-GĐ), Chuyên Phan Bội Châu Nghệ An và các trường Chuyên

khác cùng TS.Trần Nam Dũng, TS Pham Sỹ Nam, TS Trịnh Thanh Đèo và Thầy Nguyễn Đức Tấn

II Khoá Học Nâng Cao và HSG

THCS lớp 6, 7, 8, 9 yêu thích môn Toán phát triển tư duy, nâng cao thành tích học tập ở trường và đạt

điểm tốt ở các kỳ thi HSG

cho học sinh các khối lớp 10, 11, 12 Đội ngũ Giảng Viên giàu kinh nghiệm: TS Lê Bá Khánh Trình, TS Trần Nam Dũng, TS Pham Sỹ Nam, TS Lưu Bá Thắng, Thầy Lê Phúc Lữ, Thầy Võ Quốc Bá Cẩn cùng đôi HLV đạt thành tích cao HSG Quốc Gia

III Kênh học tập miễn phí

-HOC247 NET: Website hoc miễn phí các bài học theo chương trình SGK từ lớp 1 đến lớp 12 tất cả các môn học với nội dung bài giảng chi tiết, sửa bài tập SGK, luyện tập trắc nghiệm mễn phí, kho tư liệu

tham khảo phong phú và cộng đồng hỏi đáp sôi động nhất

-HOC247 TV: Kênh Youtube cung cấp các Video bài giảng, chuyên đề, ôn tập, sửa bài tập, sửa đề thi

miễn phí từ lớp 1 đến lớp 12 tất cả các môn Toán- Lý - Hoá, Sinh- Sử - Địa, Ngữ Văn, Tin Học và Tiếng Anh

V ng vàng n n t ng, Khai sáng t ữ ề ả ươ ng lai

H c m i lúc, m i n i, m i thi t bi – Ti t ki m ọ ọ ọ ơ ọ ế ế ệ

90%

HOC247 NET c ng đ ng h c t p mi n phí ộ ồ ọ ậ ễ HOC247 TV kênh Video bài gi ng mi n phí ả ễ

Ngày đăng: 08/04/2023, 14:11

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w