Vững vàng nền tảng, Khai sáng tương lai Chuyên đề BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN I Kiến thức cần nhớ 1 Định nghĩa Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥[.]
Trang 1Chuyên đề
BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN
I Kiến thức cần nhớ
1 Định nghĩa
Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥ 0 ) trong đó a và b là
hai số đã cho, a \ne 0 , được gọi là bất phương trình bậc nhất một ẩn.
Ví dụ:
Các bất phương trình bậc nhất một ẩn như: 2x + 3 > 0; 3 - x ≤ 0; x + 2 < 0; 4x + 7 ≥ 0;
2 Hai quy tắc biến đổi bất phương trình
a) Quy tắc chuyển vế
Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó
Ví dụ: Giải bất phương trình x - 3 < 4.
Hướng dẫn:
Ta có x - 3 < 4
⇔ x < 4 + 3 (chuyển vế - 3 và đổi dấu thành 3)
⇔ x < 7
Vậy tập nghiệm của bất phương trình là { x| x < 7 }
b) Quy tắc nhân với một số.
Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:
Giữ nguyên chiều bất phương trình nếu số đó dương
Đổi chiều bất phương trình nếu số đó âm
Ví dụ 1: Giải bất phương trình (x - 1)/3 ≥ 2.
Hướng dẫn:
Ta có: (x - 1)/3 ≥ 2
⇔ (x - 1)/3.3 ≥ 2.3 (nhân cả hai vế với 3)
⇔ x - 1 ≥ 6 ⇔ x ≥ 7
Vậy tập nghiệm của bất phương trình là { x| x ≥ 7 }
Ví dụ 2: Giải bất phương trình 1 - 2/3x ≤ - 1.
Hướng dẫn:
Ta có: 1 - 2/3x ≤ - 1 ⇔ - 2/3x ≤ - 2
⇔ - 2/3x.( - 3 ) ≥ ( - 2 )( - 3 ) (nhân cả hai vế với - 3 và đổi chiều)
⇔ 2x ≥ 6 ⇔ x ≥ 3
Vậy bất phương trình có tập nghiệm là { x| x ≥ 3 }
3 Giải bất phương trình một ẩn
Áp dụng hai quy tắc biến đổi trên, ta giải bất phương trình bậc nhất một ẩn như sau:
Dạng ax + b > 0 ⇔ ax > - b
Trang 2⇔ x > - b/a nếu a > 0 hoặc x < - b/a nếu a < 0.
Vậy bất phương trình có tập nghiệm là
hoặc
Các dạng toán như ax + b < 0, ax + b ≤ 0, ax + b ≥ 0 tương tự như trên
Ví dụ 1: Giải bất phương trình 2x - 3 > 0
Hướng dẫn:
Ta có: 2x - 3 > 0
⇔ 2x > 3 (chuyển - 3 sang VP và đổi dấu)
⇔ 2x:2 > 3:2 (chia cả hai vế cho 2)
⇔ x > 3/2
Vậy bất phương trình đã cho có tập nghiệm là { x| x > 3/2 }
Ví dụ 2: Giải bất phương trình 2x - 1 ≤ 3x - 7
Hướng dẫn:
Ta có: 2x - 1 ≤ 3x - 7 ⇔ - 1 + 7 ≤ 3x - 2x
⇔ x ≥ 6
Vậy bất phương trình đã cho có tập nghiệm là { x| x ≥ 6 }
II Bài tập tự luyện
1 Bài tập trắc nghiệm
Bài 1: Tập nghiệm S của bất phương trình: 5x - 1 ≥ (2x)/5 + 3 là?
A. S = R
B. x > 2
C. x < -5/2
D. x ≥ 20/23;
Hướng dẫn giải
Ta có: 5x - 1 ≥ (2x)/5 + 3 ⇔ 25x - 5 ≥ 2x + 15 ⇔ 23x ≥ 20 ⇔ x ≥ 20/23
Vậy tập nghiệm của bất phương trình là x ≥ 20/23;
Chọn đáp án D.
Bài 2: Bất phương trình ( 2x - 1 )( x + 3 ) - 3x + 1 ≤ ( x - 1 )( x + 3 ) + x2 - 5 có tập nghiệm là?
A. x < - 2/3
B. x ≥ - 2/3
C. S = R
D. S = Ø
Trang 3Hướng dẫn giải
Ta có: ( 2x - 1 )( x + 3 ) - 3x + 1 ≤ ( x - 1 )( x + 3 ) + x2 - 5
⇔ 2x2 + 5x - 3 - 3x + 1 ≤ x2 + 2x - 3 + x2 - 5 ⇔ 0x ≤ - 6
⇔ x ∈ Ø → S = Ø
Chọn đáp án D.
Bài 3: Giải bất phương trình : 2x + 4 < 16
A x > 6
B x < 6
C x < 8
D x > 8
Hướng dẫn giải
Chọn đáp án B
Bài 4: Giải bất phương trình: 8x + 4 > 2(x+ 5)
A x > 2
B x < -1
C x > -1
D x > 1
Hướng dẫn giải
Ta có: 8x + 4 > 2( x +5 )
⇔ 8x + 4 > 2x + 10
⇔ 8x – 2x > 10 - 4
⇔ 6x > 6
⇔ x > 6 : 6
⇔ x > 1
Chọn đáp án D
Bài 5: Tìm m để x = 2 là nghiệm bất phương trình: mx + 2 < x + 3 + m
A m = 2
B m < 3
C m > 1
D m < - 3
Hướng dẫn giải
Do x = 2 là nghiệm của bất phương trình đã cho nên:
⇔ 2m + 2 < 2 + 3 + m
Trang 4⇔ m < 3
Chọn đáp án B
2 Bài tập tự luận
Bài 1: Tìm tập nghiệm của các bất phương trình sau:
a) ( x + √ 3 )2 ≥ ( x - √ 3 )2 + 2
b) x + √ x < ( 2√ x + 3 )( √ x - 1 )
c) (x - 3)√(x - 2) ≥ 0
Hướng dẫn:
a) Ta có: ( x + √ 3 )2 ≥ ( x - √ 3 )2 + 2
⇔ x2 + 2√ 3 x + 3 ≥ x2 - 2√ 3 x + 3 + 2
⇔ 4√3x ≥ 2 ⇔ x ≥ √3/6
Vậy bất phương trình đã cho có tập nghiệm là S = [ √ 3 /6; + ∞ )
b) Ta có: x + √ x < ( 2√ x + 3 )( √ x - 1 )
Điều kiện: x ≥ 0
⇔ x + √ x < 2x - 2√ x + 3√ x - 3
⇔ - x < - 3 ⇔ x > 3
Kết hợp điều kiện, tập nghiệm bất phương trình là: x > 3
Vậy bất phương trình đã cho có tập nghiệm là x > 3
c) Ta có: (x - 3)√(x - 2) ≥ 0
Điều kiện: x ≥ 2
Bất phương trình tương đương là
Vậy tập nghiệm của bất phương trình là x = 2 hoặc x ≥ 3
Bài 2: Có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 - m )x < m vô nghiệm là?
Hướng dẫn:
Rõ ràng nếu m2 - m ≠ 0 ⇔ thì bất phương trình luôn có nghiệm
Với m = 0, bất phương trình trở thành 0x < 0: vô nghiệm
Với m = 1, bất phương trình trở thành 0x < 1: luôn đúng với mọi x ∈ R
Vậy với m = 0 thì bất phương trình trên vô nghiệm
Trang 5Website HOC247 cung cấp một môi trường học trực tuyến sinh động, nhiều tiện ích thông minh, nội
dung bài giảng được biên soạn công phu và giảng dạy bởi những giáo viên nhiều năm kinh nghiệm, giỏi
về kiến thức chuyên môn lẫn kỹ năng sư phạm đến từ các trường Đại học và các trường chuyên danh
tiếng
I Luyện Thi Online
dựng các khóa luyện thi THPTQG các môn: Toán, Ngữ Văn, Tiếng Anh, Vật Lý, Hóa Học và Sinh Học
-Luyện thi vào lớp 10 chuyên Toán: Ôn thi HSG lớp 9 và luyện thi vào lớp 10 chuyên Toán các trường
PTNK, Chuyên HCM (LHP-TĐN-NTH-GĐ), Chuyên Phan Bội Châu Nghệ An và các trường Chuyên
khác cùng TS.Trần Nam Dũng, TS Pham Sỹ Nam, TS Trịnh Thanh Đèo và Thầy Nguyễn Đức Tấn
II Khoá Học Nâng Cao và HSG
THCS lớp 6, 7, 8, 9 yêu thích môn Toán phát triển tư duy, nâng cao thành tích học tập ở trường và đạt
điểm tốt ở các kỳ thi HSG
cho học sinh các khối lớp 10, 11, 12 Đội ngũ Giảng Viên giàu kinh nghiệm: TS Lê Bá Khánh Trình, TS Trần Nam Dũng, TS Pham Sỹ Nam, TS Lưu Bá Thắng, Thầy Lê Phúc Lữ, Thầy Võ Quốc Bá Cẩn cùng đôi HLV đạt thành tích cao HSG Quốc Gia
III Kênh học tập miễn phí
-HOC247 NET: Website hoc miễn phí các bài học theo chương trình SGK từ lớp 1 đến lớp 12 tất cả các môn học với nội dung bài giảng chi tiết, sửa bài tập SGK, luyện tập trắc nghiệm mễn phí, kho tư liệu
tham khảo phong phú và cộng đồng hỏi đáp sôi động nhất
-HOC247 TV: Kênh Youtube cung cấp các Video bài giảng, chuyên đề, ôn tập, sửa bài tập, sửa đề thi
miễn phí từ lớp 1 đến lớp 12 tất cả các môn Toán- Lý - Hoá, Sinh- Sử - Địa, Ngữ Văn, Tin Học và Tiếng Anh
V ng vàng n n t ng, Khai sáng t ữ ề ả ươ ng lai
H c m i lúc, m i n i, m i thi t bi – Ti t ki m ọ ọ ọ ơ ọ ế ế ệ
90%
HOC247 NET c ng đ ng h c t p mi n phí ộ ồ ọ ậ ễ HOC247 TV kênh Video bài gi ng mi n phí ả ễ