TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính mô đun của số phức z biết (1 + 2i)z2 = 3 + 4i A |z| =[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 11 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
Câu 2. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?
Câu 3. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
Câu 4. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 5. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
Câu 6. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 7. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√3
a√6
a√6
3 .
Câu 8 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
C Cả ba đáp án trên.
D Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 9. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 10. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 11. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối lập phương B Khối tứ diện đều C Khối bát diện đều D Khối 12 mặt đều.
Câu 12. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 13. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R B. D = (1; +∞) C. D = (−∞; 1) D. D = R \ {1}
Câu 14. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 15. Nhị thập diện đều (20 mặt đều) thuộc loại
Trang 2Câu 16. [2] Tổng các nghiệm của phương trình 3x−1.2x = 8.4x−2
là
Câu 17. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A −1
1
2e.
Câu 18. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
15.
Câu 19. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
6
a3
√ 5
3√
3√ 15
3 .
Câu 20. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 21. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e +2
e. B T = 4 + 2
e. C T = e + 3 D T = e + 1
Câu 22. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
3
2a3√3
4a3
4a3√3
3 .
Câu 23. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 24. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3
√ 15
a3
√ 5
a3
3 .
Câu 25. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là
A. C
40
50.(3)10
10
50.(3)40
20
50.(3)20
20
50.(3)30
450
Câu 26. Tìm giới hạn lim2n+ 1
n+ 1
Câu 27. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
2
1
1
10.
Câu 28. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
Trang 3Câu 29. Khối chóp ngũ giác có số cạnh là
Câu 30. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 31. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1728
23
68.
Câu 32. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số đồng biến trên khoảng (1; 2) B Hàm số nghịch biến trên khoảng (1;+∞)
C Hàm số nghịch biến trên khoảng (0; 1) D Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 33. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
2 .
Câu 34. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
5
a2
√ 7
11a2
a2
√ 2
4 .
Câu 35. [4-1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 36. Tứ diện đều thuộc loại
Câu 37. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2017 B T = 1008 C T = 2016 D T = 2016
2017.
Câu 38. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 ln 2x
x3ln 10 . B y
0 = 1 2x3ln 10. C y
0 = 1 − 2 log 2x
x3 D y0 = 1 − 4 ln 2x
2x3ln 10 .
Câu 39. Khối đa diện đều loại {4; 3} có số mặt
Câu 40. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 41. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
2e
π
√ 3
2 e
π
√ 2
2 e
π
4
Câu 42. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A a3
√
3√ 2
a3√3
a3√2
12 .
Trang 4Câu 43. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. 1
2;+∞
!
2
!
2
!
2;+∞
!
Câu 44. Cho I =
Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 45. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là
A. 7
3; 0; 0
!
3; 0; 0
!
3; 0; 0
!
Câu 46. Khối đa diện đều loại {3; 4} có số mặt
Câu 47. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 48. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
1
e3
Câu 49. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 50. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x − 3)2+ (y − 1)2+ (z − 3)2= 9
2+ (y + 1)2+ (z + 3)2= 9
4.
C (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
4. D (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
4.
Câu 51. [2] Cho hàm số f (x)= x ln2
x Giá trị f0(e) bằng
Câu 52. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
A 3
√
Câu 53. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 54. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 55. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
2 . B V = πa3
√ 3
3 . C V = πa3
√ 3
6 . D V = πa3
√ 6
6 .
Trang 5Câu 56. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 57. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 58. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 59. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 60. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 61. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 5
a3√ 5
a3√ 5
12 .
Câu 62. Khối đa diện đều loại {3; 3} có số mặt
Câu 63. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. √ ab
a2+ b2 C. √ 1
2
√
a2+ b2
Câu 64. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 65. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
A. 2
√
3
√ 3
Câu 66. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối lập phương D Khối bát diện đều.
Câu 67. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 68. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
Trang 6Câu 69. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ [a; b], ta có F0(x)= f (x)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
C Với mọi x ∈ (a; b), ta có f0(x)= F(x)
D Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
Câu 70. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 71. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
3√
3
a3
√ 3
3√
3√ 3
6 .
Câu 72. Khối đa diện đều loại {3; 5} có số mặt
Câu 73. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 1
2
2
Câu 74. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 70, 128 triệu đồng B 20, 128 triệu đồng C 3, 5 triệu đồng D 50, 7 triệu đồng.
Câu 75. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 76 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
u0(x)
u(x)dx= log |u(x)| + C
B F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
Câu 77. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 78. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {1} B. D = R \ {0} C. D = R D. D = (0; +∞)
Câu 79. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 80. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 81. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
5
4 < m < 0
Câu 82. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Trang 7Câu 83. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 84. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 85. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 1
3S h.
Câu 86. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 87. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
√
3
a√3
√
√ 3
3 .
Câu 88. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 89. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3
− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
A m = −3 B −3 ≤ m ≤ 4 C m= −3, m = 4 D m= 4
Câu 90 Phát biểu nào sau đây là sai?
C lim 1
nk = 0 với k > 1 D lim √1
n = 0
Câu 91. Khối lập phương thuộc loại
Câu 92. Tính lim
x→2
x+ 2
x bằng?
Câu 93. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
− 1
Câu 94. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 95. Tìm giá trị lớn chất của hàm số y= x3
− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 96. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?
Câu 97. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Trang 8Câu 98. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 99. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
2
3.
Câu 100. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 101. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= 10 B f0(0)= ln 10 C f0(0)= 1
ln 10. D f
0 (0)= 1
Câu 102. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 103. [1] Giá trị của biểu thức 9log3 12bằng
Câu 104. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
A. 1
1
Câu 105. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 106. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối 20 mặt đều C Khối tứ diện đều D Khối bát diện đều.
Câu 107 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
Câu 108. Khối đa diện đều loại {5; 3} có số mặt
Câu 109. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 110. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 111. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m < 1
1
1
1
4.
Câu 112. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 113. Dãy số nào sau đây có giới hạn là 0?
A un= 1 − 2n
5n+ n2 B un = n2− 2
5n − 3n2 C un = n2− 3n
n2 D un = n2+ n + 1
(n+ 1)2
Câu 114. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Trang 9Câu 115. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
Câu 116. Hàm số y= x +1
x có giá trị cực đại là
Câu 117. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. 1
ln 2
Câu 118. Tính limcos n+ sin n
n2+ 1
Câu 119. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 120. [1] Phương trình log3(1 − x)= 2 có nghiệm
Câu 121 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C B. Z f(x)dx
!0
= f (x)
C.
Z
k f(x)dx= kZ f(x)dx, k là hằng số D.
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C
Câu 122. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số nghịch biến trên khoảng (−∞; 2).
C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0; 2).
Câu 123. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 124. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Tăng lên n lần B Không thay đổi C Tăng lên (n − 1) lần D Giảm đi n lần.
Câu 125. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 126. Hàm số y= −x3+ 3x2
− 1 đồng biến trên khoảng nào dưới đây?
Câu 127. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A a
√
√ 6
√
√ 6
Câu 128 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
xαdx= xα+1
α + 1+ C, C là hằng số. B.
Z 0dx = C, C là hằng số
C.
Z
1
xdx= ln |x| + C, C là hằng số D.
Z
dx = x + C, C là hằng số
Câu 129. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3√
3
3
a3√3
9 .
Trang 10Câu 130. Tìm m để hàm số y= x4
− 2(m+ 1)x2
− 3 có 3 cực trị
HẾT