1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 7 (518)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 7 (518)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 153,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ A[.]

Trang 1

Free LATEX

(Đề thi có 11 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 3 lần B Tăng gấp 27 lần C Tăng gấp 18 lần D Tăng gấp 9 lần.

Câu 2. [2] Đạo hàm của hàm số y = x ln x là

A y0 = x + ln x B y0 = 1 − ln x C y0 = ln x − 1 D y0 = 1 + ln x

Câu 3. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

ln 10. C f

0 (0)= ln 10 D f0(0)= 10

Câu 4. Khối đa diện đều loại {3; 3} có số mặt

Câu 5. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 ln 2x

x3ln 10 . B y

0 = 1 − 4 ln 2x 2x3ln 10 . C y

0 = 1 − 2 log 2x

x3 D y0 = 1

2x3ln 10.

Câu 6. Tính lim

x→1

x3− 1

x −1

Câu 7. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

A.

Câu 8. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

Câu 9. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 10. [1] Tính lim 1 − n

2 2n2+ 1 bằng?

A. 1

1

1

2.

Câu 11. Khối đa diện đều loại {5; 3} có số cạnh

Câu 12. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

3 C V = 3a3

√ 3

2 . D V = a3

√ 3

2 .

Câu 13. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.

Trang 2

Câu 14. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 15. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 3S h B V = 1

3S h. C V = 1

2S h. D V = S h

Câu 16. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3)−√ 6

3x+ 1 Tính

Z 1 0

f(x)dx

Câu 17. Tính lim 5

n+ 3

Câu 18. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

√ 10

Câu 19. Khối lập phương thuộc loại

Câu 20. Khối đa diện đều loại {5; 3} có số mặt

Câu 21 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαbα= (ab)α

B aαβ = (aα

C aα+β = aα.aβ

α

aβ = aα

Câu 22. [1] Giá trị của biểu thức 9log3 12bằng

Câu 23. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A. 12

17

Câu 24. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 25. Hàm số nào sau đây không có cực trị

A y = x3− 3x B y= x +1

x. C y= x −2

2x+ 1. D y= x4− 2x+ 1.

Câu 26. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. 2a

3√

6

3√

3√ 6

a3√6

3 .

Câu 27. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

5

23

9

25.

Câu 28. Hàm số f có nguyên hàm trên K nếu

C f (x) có giá trị nhỏ nhất trên K D f (x) có giá trị lớn nhất trên K.

Trang 3

Câu 29. [4] Cho lăng trụ ABC.A BC có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A. 14

3

√ 3

√ 3

Câu 30. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

Câu 31. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

5

a3√ 6

3√

3√ 15

3 .

Câu 32. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 33. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 34. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 35. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 36. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 3 đỉnh, 3 cạnh, 3 mặt B 6 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 6 cạnh, 4 mặt D 4 đỉnh, 8 cạnh, 4 mặt.

Câu 37. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

A (−∞; −1) và (0; +∞) B (−1; 0) C (−∞; 0) và (1; +∞) D (0; 1).

Câu 38. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

a√2

a

2a

3 .

Câu 39. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

A Dãy số unkhông có giới hạn khi n →+∞ B lim un= 1

C lim un= 1

Câu 40. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 41. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng

Trang 4

Câu 42. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.1, 03

3 triệu.

C m = 120.(1, 12)3

(1, 12)3− 1 triệu. D m = (1, 01)3

(1, 01)3− 1 triệu.

Câu 43. [1] Tập xác định của hàm số y= 4x 2 +x−2là

A. D = R \ {1; 2} B. D = R C. D = [2; 1] D. D = (−2; 1)

Câu 44. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 5a

8a

a

2a

9 .

Câu 45. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

15

a3

a3

√ 15

a3

√ 5

25 .

Câu 46. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số đồng biến trên khoảng (1; 2) B Hàm số nghịch biến trên khoảng (0; 1).

C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng (−∞; 0).

Câu 47. Dãy số nào sau đây có giới hạn là 0?

A. 1

3

!n

e

!n

3

!n

3

!n

Câu 48. [4] Xét hàm số f (t)= 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 49. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 0 B M= e, m = 1

e. C M = 1

e, m = 0 D M = e, m = 1

Câu 50. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 51 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

C Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

Câu 52. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3

abằng

A. 1

1

3.

Trang 5

Câu 53. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

Câu 54. Xác định phần ảo của số phức z= (√2+ 3i)2

√ 2

Câu 55. Dãy số nào có giới hạn bằng 0?

A un= n2− 4n B un = n3− 3n

n+ 1 . C un = −2

3

!n D un = 6

5

!n

Câu 56. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

A 2

3, 4

3, 38 B 2, 4, 8 C 6, 12, 24 D 8, 16, 32.

Câu 57. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là 1 −

2, phần ảo là −

2 − 1, phần ảo là

√ 3

C Phần thực là √2 − 1, phần ảo là −

3 D Phần thực là √2, phần ảo là 1 −

√ 3

Câu 58. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

7

11a2

a2√5

a2√2

4 .

Câu 59. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

Câu 60. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= 2i B P= −1 − i

√ 3

√ 3

Câu 61. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±1 B m= ±√3 C m= ±√2 D m= ±3

Câu 62. Tính lim

x→3

x2− 9

x −3

Câu 63. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 64. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 65. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {0} B. D = R C. D = R \ {1} D. D = (0; +∞)

Câu 66. [1] Đạo hàm của làm số y = log x là

0 = 1

xln 10. C y

0 = ln 10

0 = 1

x.

Câu 67. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→af(x)= f (a)

C lim

x→a + f(x)= lim

x→a − f(x)= +∞ D f (x) có giới hạn hữu hạn khi x → a.

Trang 6

Câu 68. [12215d] Tìm m để phương trình 4x+ 1−x2 − 4.2x+ 1−x2 − 3m+ 4 = 0 có nghiệm

3

3

4.

Câu 69. Cho I =

Z 3 0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 70. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối tứ diện đều C Khối lập phương D Khối bát diện đều.

Câu 71. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 72. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 2ac

3b+ 3ac

3b+ 3ac

3b+ 2ac

c+ 2 .

Câu 73. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 74. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 75. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

√ 2

√ 2

Câu 76. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 77. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3

− mx2+ 3x + 4 đồng biến trên R

Câu 78. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 79. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A 2a2

3√ 2

a3√3

a3√3

24 .

Câu 80. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 81. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Trang 7

Câu 82. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

A. 1

2

Câu 83. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 84. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A −1

1

Câu 85. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

√ 3

√ 3

3

4.

Câu 86. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 87. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 88. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 89. Tính giới hạn lim2n+ 1

3n+ 2

A. 3

2

1

Câu 90. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 91. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3

a3√3

3√ 3

2 .

Câu 92 Phát biểu nào sau đây là sai?

nk = 0 với k > 1

C lim un= c (Với un = c là hằng số) D lim √1

n = 0

Câu 93. Khẳng định nào sau đây đúng?

A Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

B Hình lăng trụ tứ giác đều là hình lập phương.

C Hình lăng trụ đứng là hình lăng trụ đều.

D Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

Câu 94. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A a

√ 2

a√2

2 .

Trang 8

Câu 95. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

3

a3

6 .

Câu 96. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 97. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 98. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Chỉ có (II) đúng B Cả hai đều đúng C Cả hai đều sai D Chỉ có (I) đúng.

Câu 99. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

A −1

1

1

e2

Câu 100. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 3, 5 triệu đồng B 20, 128 triệu đồng C 70, 128 triệu đồng D 50, 7 triệu đồng.

Câu 101. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 102. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 103. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√ 3

a3√ 3

a3√ 3

24 .

Câu 104. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 105. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

Câu 106. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Trang 9

Câu 107. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 108. Tính lim n −1

n2+ 2

Câu 109. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 110. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 111. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 112. Khối đa diện đều loại {3; 3} có số cạnh

Câu 113. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 1

3

√ 3

2 .

Câu 114 Phát biểu nào sau đây là sai?

A lim 1

n = 0

Câu 115. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 116. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 117. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

A. 1

1

4.

Câu 118. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

a

√ 57

2a√57

√ 57

Câu 119. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 120. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của

P= xy + x + 2y + 17

Trang 10

Câu 121. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A= a√3 Thể tích của khối chóp S ABCD là

A a3

3

a3√3

a3√3

12 .

Câu 122. Khối chóp ngũ giác có số cạnh là

Câu 123. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

5

2.

Câu 124. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

16 .

Câu 125. Tính lim

x→−∞

x+ 1 6x − 2 bằng

1

1

3.

Câu 126. Hàm số y= x +1

x có giá trị cực đại là

Câu 127. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 128. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y

A Pmin= 9

11 − 19

9 . B Pmin = 9

11+ 19

9 . C Pmin = 18

11 − 29

21 D Pmin= 2

11 − 3

Câu 129. Tính lim

x→ +∞

x −2

x+ 3

Câu 130. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

2 .

HẾT

Ngày đăng: 07/04/2023, 23:22

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN