1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 6 (671)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 6 (671)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 149,22 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [2] Cho hình hộp chữ nhật ABCD A′B′C′D′ có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC′A′ bằng[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 C. ab

a2+ b2 D. √ 1

a2+ b2

Câu 2. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±√2 B m= ±√3 C m= ±3 D m= ±1

A y0 = 1

0 = 2x ln x C y0 = 2x ln 2 D y0 = 1

2x ln x.

Câu 4. Khối chóp ngũ giác có số cạnh là

Câu 5. Tập xác định của hàm số f (x)= −x3+ 3x2

− 2 là

Câu 6. Cho hàm số y = f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

Câu 7. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 8. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

A lim un= 1

Câu 9. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối lập phương B Khối 12 mặt đều C Khối bát diện đều D Khối tứ diện đều.

A un= n3− 3n

n+ 1 . B un = n2

− 4n C un = 6

5

!n D un = −2

3

!n

Câu 11. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

√ 3

√ 3

3

4.

Câu 13. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

A.

thẳng BB0và AC0bằng

a2+ b2 B. √ 1

a2+ b2 C. √ ab

2√a2+ b2

Trang 2

Câu 15. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60 Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 4a

3√

3

2a3

√ 3

a3

√ 3

5a3

√ 3

3 .

Câu 16. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

D.

Z

f(x)dx

!0

= f (x)

Câu 18. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 19. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

5

23

9

25.

lên?

Câu 21. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3)−√ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 22. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

15.

Câu 23. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 24. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối bát diện đều C Khối 20 mặt đều D Khối 12 mặt đều.

Câu 25. Nhị thập diện đều (20 mặt đều) thuộc loại

của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 2a

3√

3

4a3√ 3

2a3

4a3

3 .

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Trang 3

Câu 28. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A.

"

−2

3;+∞

!

3

# C. " 2

5;+∞

!

5

#

Câu 29. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 30. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab +1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

7

2.

Câu 31. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 32. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là 4, phần ảo là −1 B Phần thực là 4, phần ảo là 1.

C Phần thực là −1, phần ảo là −4 D Phần thực là −1, phần ảo là 4.

Câu 33. Khối đa diện đều loại {3; 3} có số cạnh

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 36. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. 2a

57

a√57

a√57

√ 57

x→2

x+ 2

x bằng?

n2+ 2

x→−∞

x2+ 3x + 5 4x − 1

A. 1

1

giữa hai đường thẳng S B và AD bằng

A. a

2

a√2

√ 2

Câu 42. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu f (x)= g(x) + 1, ∀x ∈ R thì

Z

f0(x)dx=

Z

g0(x)dx

Trang 4

B Nếu f(x)dx= g(x)dx thì f (x)= g(x), ∀x ∈ R.

C Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

D Nếu

Z

f0(x)dx =

Z

g0(x)dx thì f (x) = g(x), ∀x ∈ R

Câu 43. [12212d] Số nghiệm của phương trình 2x−3.3x−2

− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 44. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 45. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 9

11+ 19

9 . B Pmin = 9

11 − 19

9 . C Pmin = 18

11 − 29

21 D Pmin= 2

11 − 3

Câu 46. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→a − f(x)= +∞

x→a + f(x)= lim

x→a − f(x)= a

Câu 47. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A −2 ≤ m ≤ −1 B −2 < m < −1 C (−∞; −2] ∪ [−1; +∞) D (−∞; −2)∪(−1; +∞).

Câu 49. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối tứ diện đều B Khối bát diện đều C Khối 20 mặt đều D Khối 12 mặt đều.

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 51. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 52. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 53. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 3n

n2 B un = 1 − 2n

5n+ n2 C un = n2− 2

5n − 3n2 D un = n2+ n + 1

(n+ 1)2

Câu 54. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

A −1

1

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

a3√2

3√

3√ 3

6 .

Trang 5

Câu 56 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 25 triệu đồng B 2, 20 triệu đồng C 2, 22 triệu đồng D 3, 03 triệu đồng.

Câu 57. Khối đa diện đều loại {3; 5} có số cạnh

Câu 58. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x

lần lượt là

Câu 59. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A. 12

17

√ 68

Câu 60. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

2

2 e

π

√ 3

2 e

π

2e

π

3

Câu 61. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

A. ln 2

1

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3√6

a3√6

a3√3

24 .

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

2.

đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

a3√ 3

a3√ 3

8 .

A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

B Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

C Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

D Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

Câu 66. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 67. [1] Tập xác định của hàm số y= 4x2+x−2là

A. D = (−2; 1) B. D = R C. D = [2; 1] D. D = R \ {1; 2}

Trang 6

Câu 68. Khẳng định nào sau đây đúng?

A Hình lăng trụ tứ giác đều là hình lập phương.

B Hình lăng trụ đứng là hình lăng trụ đều.

C Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

D Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

Câu 69. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 70. Tính giới hạn lim2n+ 1

3n+ 2

A. 2

3

1

2.

Câu 71. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

√ 3

2 . D P= −1 − i

√ 3

Câu 72. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

giữa hai đường thẳng BD và S C bằng

A a

√ 6

a

√ 6

a

√ 6

3 .

2+ 22+ · · · + n2

n3

1

3.

Câu 75. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Giảm đi n lần B Tăng lên n lần C Tăng lên (n − 1) lần D Không thay đổi.

Câu 76. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

11

2 .

A Số đỉnh của khối chóp bằng số cạnh của khối chóp.

B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

C Số đỉnh của khối chóp bằng số mặt của khối chóp.

D Số cạnh của khối chóp bằng số mặt của khối chóp.

x2 là

A y0 = 1 − 2 log 2x

x3 B y0 = 1

2x3ln 10. C y

0 = 1 − 4 ln 2x 2x3ln 10 . D y

0 = 1 − 2 ln 2x

x3ln 10 .

Câu 79. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A.

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

Trang 7

(III) lim qn= +∞ nếu |q| > 1.

x→ +∞

2x+ 1

x+ 1

Câu 82. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

log2a. B log2a= loga2 C log2a= − loga2 D log2a= 1

loga2.

Câu 83. Khối đa diện đều loại {4; 3} có số cạnh

Câu 84. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

là:

Câu 86. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1 B M= e, m = 0 C M = e, m = 1

e. D M = 1

e, m = 0

x+ 5m đồng biến trên khoảng (−∞; −10)?

Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 89. Xác định phần ảo của số phức z= (√2+ 3i)2

√ 2

log715 − log71530 bằng

Câu 91. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

n+ 1

Câu 93. Khối đa diện đều loại {3; 4} có số mặt

thành

A Hai hình chóp tứ giác.

B Hai hình chóp tam giác.

C Một hình chóp tam giác và một hình chóp tứ giác.

D Một hình chóp tứ giác và một hình chóp ngũ giác.

Trang 8

Câu 95. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 96. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

Câu 97 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx B.

Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx

C.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0 D.

Z

f(x)g(x)dx=

Z

f(x)dx

Z g(x)dx

Câu 98. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 9

3

3

Câu 99. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

5

a3

a3√15

a3√15

25 .

Câu 100. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√3

a3√3

a3√3

12 .

Câu 101. Khối đa diện đều loại {3; 4} có số cạnh

Câu 102. [2] Đạo hàm của hàm số y = x ln x là

A y0 = x + ln x B y0 = 1 − ln x C y0 = 1 + ln x D y0 = ln x − 1

√ 3i lần lượt l

A Phần thực là

2 − 1, phần ảo là −

2, phần ảo là −

√ 3

C Phần thực là

2 − 1, phần ảo là

2, phần ảo là 1 −

√ 3

Câu 104. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

Câu 105. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 106. Bát diện đều thuộc loại

2− 1 3n6+ n4

Câu 108. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e + 1 B T = e + 2

e. C T = 4 + 2

e. D T = e + 3

Trang 9

Câu 109 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

B F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

D.

Z

u0(x)

u(x)dx= log |u(x)| + C

Câu 110. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 111. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 112. [2] Tập xác định của hàm số y= (x − 1)1

A. D = R \ {1} B. D = (1; +∞) C. D = R D. D = (−∞; 1)

Câu 113. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp ngữ giác.

B Hai khối chóp tứ giác.

C Một khối chóp tam giác, một khối chóp tứ giác.

D Hai khối chóp tam giác.

Câu 114. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số nghịch biến trên khoảng (0; 1).

C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số đồng biến trên khoảng (1; 2).

Câu 115. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

Câu 117. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 118. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3√

3

a3√ 3

3

3 .

Câu 119. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 120. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

√ 10

Câu 122. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng −∞;1

3

! B Hàm số đồng biến trên khoảng 1

3; 1

!

Trang 10

C Hàm số nghịch biến trên khoảng 1

3; 1 . D Hàm số nghịch biến trên khoảng (1;+∞)

2n2+ 3n + 1 bằng

Câu 125. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Khoảng cách từ A đến mặt phẳng (S BC) bằng

Câu 127. Giá trị của giới hạn lim2 − n

n+ 1 bằng

2− 2n3+ 1 3n3+ 2n2+ 1

7

Câu 129. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Năm hình chóp tam giác đều, không có tứ diện đều.

B Năm tứ diện đều.

C Bốn tứ diện đều và một hình chóp tam giác đều.

D Một tứ diện đều và bốn hình chóp tam giác đều.

HẾT

Trang 11

-ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Trang 12

70 A 71 A

Ngày đăng: 07/04/2023, 23:15