1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 4 (726)

12 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề Ôn Tập Toán Thptqg 4 (726)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán Học
Thể loại Đề Thi
Định dạng
Số trang 12
Dung lượng 146,53 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [3 1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 K[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 2. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 3. Cho lăng trụ đứng ABC.A0B0C0 có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. a

3√

6

4a3

√ 6

3√

3√ 6

3 .

Câu 4. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 5. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 6. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

a3

a3

3

Câu 7. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số mặt của khối chóp.

B Số cạnh của khối chóp bằng số mặt của khối chóp.

C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

D Số đỉnh của khối chóp bằng số cạnh của khối chóp.

Câu 8. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

3, 4

3, 38 C 8, 16, 32 D 2, 4, 8.

Câu 9. Khối đa diện đều loại {3; 5} có số cạnh

Câu 10. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 11. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 12. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

Trang 2

Câu 13. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

A (−∞; 0) và (1; +∞) B (−∞; −1) và (0; +∞) C (−1; 0) D (0; 1).

Câu 14. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 15. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 16. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 17. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

A. a

a

a√3

2 .

Câu 18. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 3 đỉnh, 3 cạnh, 3 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 6 đỉnh, 6 cạnh, 4 mặt D 4 đỉnh, 8 cạnh, 4 mặt.

Câu 19. Tìm giới hạn lim2n+ 1

n+ 1

Câu 20. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 21. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A a

√ 6

a√6

a√6

2 .

Câu 22. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≥ 1

1

1

1

4.

Câu 23. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 2016

4035

2017

2018.

Câu 24. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 25. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x+3trên đoạn [0; 2] là

Câu 26. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 27. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A 6

√ 3

20√3

3 .

Trang 3

Câu 28. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 29. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3)−√ 6

3x+ 1 Tính

Z 1 0

f(x)dx

Câu 30. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 31. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 0 B M= e, m = 1

e. C M = e, m = 1 D M = 1

e, m = 0

Câu 32. Biểu thức nào sau đây không có nghĩa

A (−

Câu 33. Hàm số nào sau đây không có cực trị

A y = x3

− 3x B y= x −2

2x+ 1. C y= x +

1

x. D y= x4

− 2x+ 1

Câu 34. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp tứ giác.

B Một khối chóp tam giác, một khối chóp ngữ giác.

C Hai khối chóp tam giác.

D Hai khối chóp tứ giác.

Câu 35. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 36. Khối chóp ngũ giác có số cạnh là

Câu 37. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 38 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαβ = (aα

B aαbα = (ab)α C. a

α

aβ = aα D aα+β = aα.aβ

Câu 39. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A. a

2

√ 2

2 .

Câu 40. Dãy số nào có giới hạn bằng 0?

A un= n2− 4n B un = 6

5

!n C un = −2

3

!n D un = n3− 3n

n+ 1 .

Câu 41 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx

!0

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số

C.

Z

f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C D. Z f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C

Câu 42. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối bát diện đều B Khối tứ diện đều C Khối 20 mặt đều D Khối 12 mặt đều.

Trang 4

Câu 43. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Không thay đổi B Tăng lên (n − 1) lần C Giảm đi n lần D Tăng lên n lần.

Câu 44 Phát biểu nào sau đây là sai?

A lim 1

nk = 0 với k > 1 B lim √1

n = 0

C lim un= c (Với un = c là hằng số) D lim qn= 1 với |q| > 1

Câu 45. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

15.

Câu 46. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 47. [4] Xét hàm số f (t)= 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 48. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

A. 10a

3√

3

Câu 49. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 50. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 51. Khối đa diện đều loại {3; 3} có số mặt

Câu 52. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

Câu 53. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là

2 − 1, phần ảo là −

2 − 1, phần ảo là

√ 3

C Phần thực là √2, phần ảo là 1 −

3 D Phần thực là 1 − √2, phần ảo là −

√ 3

Câu 54. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 55. Khối đa diện đều loại {5; 3} có số cạnh

Câu 56. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

Trang 5

Câu 57. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 3n

n2 B un = 1 − 2n

5n+ n2 C un = n2− 2

5n − 3n2 D un = n2+ n + 1

(n+ 1)2

Câu 58. Khối đa diện đều loại {3; 4} có số cạnh

Câu 59. Khối đa diện đều loại {5; 3} có số mặt

Câu 60. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 61. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 2 ln 2x

x3ln 10 . C y

0 = 1 − 2 log 2x

x3 D y0 = 1 − 4 ln 2x

2x3ln 10 .

Câu 62. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Trục ảo.

B Đường phân giác góc phần tư thứ nhất.

C Trục thực.

D Hai đường phân giác y= x và y = −x của các góc tọa độ

Câu 63. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối lập phương.

Câu 64. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3

√ 3

a3

√ 3

a3

√ 3

36 .

Câu 65. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 66. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3

abằng

A. 1

1

Câu 67. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A. 2

Câu 68. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 69. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

5

Câu 70. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3

a3√3

3√

3√ 3

3 .

Trang 6

Câu 71. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 72. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= − loga2 B log2a= loga2 C log2a= 1

log2a. D log2a= 1

loga2.

Câu 73. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 74. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 75. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

15

a3

√ 15

a3

a3

√ 5

25 .

Câu 76. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 77. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 78. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 79. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 80. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

C lim un= 1

Câu 81. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x) − g(x)]= a − b B lim

x→ +∞

f(x) g(x) = a

b.

C lim

x→ +∞[ f (x)g(x)]= ab D lim

x→ +∞[ f (x)+ g(x)] = a + b

Câu 82. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 ln 2x

x3ln 10 . B y

0 = 1 − 4 ln 2x 2x3ln 10 . C y

2x3ln 10. D y

0 = 1 − 2 log 2x

x3

Câu 83. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

a3

√ 3

a3

√ 3

4 .

Câu 84. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Trang 7

Câu 85 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

xαdx= α + 1xα+1 + C, C là hằng số B.

Z 0dx = C, C là hằng số

C.

Z

1

xdx= ln |x| + C, C là hằng số D.

Z

dx = x + C, C là hằng số

Câu 86 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C Cả ba đáp án trên.

D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

Câu 87. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 6 mặt.

Câu 88. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 89. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Năm tứ diện đều.

B Bốn tứ diện đều và một hình chóp tam giác đều.

C Một tứ diện đều và bốn hình chóp tam giác đều.

D Năm hình chóp tam giác đều, không có tứ diện đều.

Câu 90. Khối đa diện đều loại {3; 3} có số cạnh

Câu 91. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

B Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

C Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

D Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

Câu 92. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 93. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

2 . B V = πa3

√ 3

3 . C V = πa3

√ 6

6 . D V = πa3

√ 3

6 .

Câu 94. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= −1 − i

√ 3

2 . B P= −1+ i

√ 3

Câu 95. Tính lim 2n

2− 1 3n6+ n4

3.

Câu 96 Mệnh đề nào sau đây sai?

A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

Trang 8

Z

f(x)dx

!

= f (x)

C F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

Câu 97. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 98. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

4.

Câu 99. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h. B V = 1

2S h. C V = S h D V = 3S h

Câu 100. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 18 lần B Tăng gấp 3 lần C Tăng gấp 9 lần D Tăng gấp 27 lần.

Câu 101. Khối đa diện đều loại {3; 4} có số mặt

Câu 102 Phát biểu nào sau đây là sai?

A lim1

C lim 1

Câu 103. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 104. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tam giác.

B Hai hình chóp tứ giác.

C Một hình chóp tứ giác và một hình chóp ngũ giác.

D Một hình chóp tam giác và một hình chóp tứ giác.

Câu 105. Khối đa diện đều loại {4; 3} có số mặt

Câu 106. Cho khối lăng trụ đứng ABC.A0B0C0có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = a3

3

2 . B V = 6a3

√ 3

2 . D V = 3a3√

3

Câu 107. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A. −∞;2

3

#

5

#

"

−2

3;+∞

! D. " 2

5;+∞

!

Trang 9

Câu 108 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx B.

Z

f(x)g(x)dx=

Z

f(x)dx

Z g(x)dx

C.

Z

( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx D.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0

Câu 109. Cho

Z 1 0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

Câu 110. Khối lập phương thuộc loại

Câu 111. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 3

1

√ 3

Câu 112. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A. 12

17

√ 5

Câu 113. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

Câu 114. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

Câu 115. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A F(x)= G(x) trên khoảng (a; b)

B F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

C Cả ba câu trên đều sai.

D G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

Câu 116. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 117. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 118. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

A −3 − 4

2 D 3+ 4√2

Câu 119 Hình nào trong các hình sau đây không là khối đa diện?

Câu 120. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 121. Cho I =Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Trang 10

Câu 122. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 123. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các số tự nhiên Tính S = m2+ 2n3

Câu 124. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 125. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 126. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 127. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 128. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√3

3√

3√ 2

2 .

Câu 129. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là 4, phần ảo là −1 B Phần thực là 4, phần ảo là 1.

C Phần thực là −1, phần ảo là 4 D Phần thực là −1, phần ảo là −4.

Câu 130. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

HẾT

Ngày đăng: 07/04/2023, 23:01