Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ ([.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD= 2a, AB = a Gọi H là trung điểm của
AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
3
2a3√3
4a3√3
2a3
3 .
Câu 2. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 6 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.
Câu 3. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x
lần lượt là
A.
√
√
√
2 và 3
Câu 4. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB= a√2 và BC = a Cạnh bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
√
58
a
√ 38
3a
3a
√ 38
29 .
Câu 5. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 38 C 8, 16, 32 D 2, 4, 8.
Câu 6. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√
√ 3
3 .
Câu 7. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
3
a3√3
a3√3
2 .
Câu 8. Khối đa diện đều loại {3; 3} có số cạnh
Câu 9. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3√ 6
a3√ 2
a3√ 6
18 .
Câu 10. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 11 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
B Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
C Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
Trang 2D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞.
Câu 12. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
a3√3
a3
√ 2
12 .
Câu 13. [1] Biết log6 √a= 2 thì log6abằng
Câu 14. Khối đa diện đều loại {5; 3} có số cạnh
Câu 15. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 16. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 17. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 18. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A. 3
1
√ 3
2 .
Câu 19. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 20. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√
√ 13
√ 26
Câu 21. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. a
√
57
√
√ 57
a
√ 57
19 .
Câu 22. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 23. Tìm giới hạn lim2n+ 1
n+ 1
Câu 24. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 25. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Trang 3Câu 26. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 27 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
C F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
D Cả ba đáp án trên.
Câu 28. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 29. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 30. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 31. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 32. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 33. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 34. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 35. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= − loga2 B log2a= 1
loga2. D log2a= loga2
Câu 36. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
2a√3
a√3
√ 3
Câu 37. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
− 1
Câu 38. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
Trang 4Câu 39 Phát biểu nào sau đây là sai?
A lim 1
n = 0
Câu 40. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
5
4 < m < 0
Câu 41. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
√
√
√ 3
Câu 42. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 43. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 44. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
2
a3√ 6
a3√ 3
a3√ 3
48 .
Câu 45. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 46. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 47. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. a
8a
5a
2a
9 .
Câu 48. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
e.
Câu 49. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 50. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 51. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Câu 52. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±√3 B m= ±3 C m= ±√2 D m= ±1
Trang 5Câu 53. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
Câu 54. Tứ diện đều thuộc loại
Câu 55. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
Câu 56. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
3√
6
a3
√ 3
a3
√ 6
a3
√ 3
4 .
Câu 57. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 1008 B T = 2016 C T = 2016
2017. D T = 2017
Câu 58. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C Số cạnh của khối chóp bằng số mặt của khối chóp.
D Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 59. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 60. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 61. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 62. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 5
a3√ 5
a3√ 5
12 .
Câu 63. Khối đa diện đều loại {3; 5} có số mặt
Câu 64. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1 − 4 ln 2x
2x3ln 10 . C y
2x3ln 10. D y
0 = 1 − 2 ln 2x
x3ln 10 .
Câu 65 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
B.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
C.
Z
[ f (x) − g(x)]dx=
Z
f(x)dx −
Z g(x)dx, với mọi f (x), g(x) liên tục trên R
Trang 6D. [ f (x)+ g(x)]dx = f(x)dx+ g(x)dx, với mọi f (x), g(x) liên tục trên R.
Câu 66. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 67 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
1
xdx= ln |x| + C, C là hằng số B.
Z
dx = x + C, C là hằng số
C.
Z
Z
xαdx= α + 1xα+1 + C, C là hằng số
Câu 68. [1] Giá trị của biểu thức 9log3 12bằng
Câu 69. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 70. Cho I = Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 71. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −1
2;+∞
!
2
!
2;+∞
!
2
!
Câu 72. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2
− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 73. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
Câu 74. Tính giới hạn lim2n+ 1
3n+ 2
A. 2
3
1
2.
Câu 75. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
B Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số nghịch biến trên khoảng (−2; 1).
D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
Câu 76. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng 2n+ 1
B Số mặt của khối chóp bằng số cạnh của khối chóp.
C Số cạnh của khối chóp bằng 2n.
D Số mặt của khối chóp bằng 2n+1.
Câu 77. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 78. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = ey
− 1 D xy0 = ey+ 1
Trang 7Câu 79. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
a
a
a
√ 2
3 .
Câu 80. [2-c] Giá trị nhỏ nhất của hàm số y = (x2
− 2)e2xtrên đoạn [−1; 2] là
Câu 81. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tứ giác.
B Một khối chóp tam giác, một khối chóp ngữ giác.
C Hai khối chóp tam giác.
D Một khối chóp tam giác, một khối chóp tứ giác.
Câu 82. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
6.
Câu 83. Tính lim
x→ +∞
x −2
x+ 3
Câu 84. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a + f(x)= lim
x→a − f(x)= +∞
x→af(x)= f (a)
Câu 85. [1] Tính lim 1 − n
2 2n2+ 1 bằng?
1
1
2.
Câu 86. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0
là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
Câu 87. Tính lim
x→5
x2− 12x+ 35
25 − 5x
A −2
Câu 88. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 89. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Bốn tứ diện đều và một hình chóp tam giác đều.
B Năm tứ diện đều.
C Một tứ diện đều và bốn hình chóp tam giác đều.
D Năm hình chóp tam giác đều, không có tứ diện đều.
Trang 8Câu 90. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 91 Phát biểu nào sau đây là sai?
A lim un= c (Với un = c là hằng số) B lim qn= 1 với |q| > 1
C lim √1
nk = 0 với k > 1
Câu 92. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 93. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 94. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
3√
6
3√
3√ 6
2a3√6
3 .
Câu 95. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 96. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 97. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tứ giác.
B Hai hình chóp tam giác.
C Một hình chóp tứ giác và một hình chóp ngũ giác.
D Một hình chóp tam giác và một hình chóp tứ giác.
Câu 98. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 99. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
Câu 100. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1
2x3ln 10. C y
0 = 1 − 4 ln 2x 2x3ln 10 . D y
0 = 1 − 2 ln 2x
x3ln 10 .
Câu 101. Khối đa diện đều loại {4; 3} có số mặt
Câu 102. [4-1213d] Cho hai hàm số y= x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y= |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 103. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 104. Khối lập phương thuộc loại
Trang 9Câu 105. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y
A Pmin= 2
√
11 − 3
3 . B Pmin = 9
√
11+ 19
9 . C Pmin = 18
√
11 − 29
21 D Pmin= 9
√
11 − 19
Câu 106. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
3
√ 3
√ 3
4 .
Câu 107. Tính lim
x→2
x+ 2
x bằng?
Câu 108. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 109. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 110. Dãy số nào có giới hạn bằng 0?
A un= 6
5
!n
B un = −2
3
!n C un = n3− 3n
n+ 1 . D un = n2
− 4n
Câu 111. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối 20 mặt đều.
Câu 112. Xác định phần ảo của số phức z= (√2+ 3i)2
Câu 113 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 22 triệu đồng B 3, 03 triệu đồng C 2, 20 triệu đồng D 2, 25 triệu đồng.
Câu 114. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1 thỏa mãn |z1− 2 − i| = 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1gần giá trị nào nhất?
Câu 115. Khối đa diện đều loại {3; 4} có số cạnh
Câu 116. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 117. Cho
Z 2 1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 118. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trang 10Trong hai câu trên
A Cả hai câu trên đúng B Chỉ có (I) đúng C Chỉ có (II) đúng D Cả hai câu trên sai.
Câu 119. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 120. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 121. Khối đa diện đều loại {3; 3} có số mặt
Câu 122. Hàm số nào sau đây không có cực trị
A y = x −2
2x+ 1. B y= x3− 3x. C y= x4− 2x+ 1. D y= x +
1
x.
Câu 123. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 124. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
A. 1
1
e3
Câu 125. [4] Xét hàm số f (t) = 9t
9t + m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho f (x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y≤ e(x+ y) Tìm số phần tử của S
Câu 126. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
√
3
a
a
3.
Câu 127. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. a
3√
3
8a3√3
4a3√3
8a3√3
9 .
Câu 128. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 129. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 130. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0
A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√ 3
√
√ 3
3 .
HẾT