1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 4 (718)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 4 (718)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 150,98 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2x trên [0; 1] bằng 8 A m = ±1 B m = ± √ 3 C m[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

Câu 2. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 3. [3] Cho hình lập phương ABCD.A0B0C0D0có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C)

và (A0C0D) bằng

A. a

3

√ 3

a√3

3 .

Câu 4 Mệnh đề nào sau đây sai?

A.

Z

f(x)dx

!0

= f (x)

B Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

C F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

D Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

Câu 5. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 6. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√ 5

a3√ 5

a3√ 3

12 .

Câu 7. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 8. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách giữa hai đường thẳng

BB0và AC0bằng

a2+ b2 B. √ 1

a2+ b2 C. √ ab

2

a2+ b2

Câu 9. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 120.(1, 12)3

(1, 12)3− 1 triệu. B m = (1, 01)3

(1, 01)3− 1 triệu.

C m = 100.(1, 01)3

3 triệu.

Câu 10. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 9

3

3

4.

Trang 2

Câu 11. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 12. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m > 1

1

1

1

4.

Câu 13 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

B Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

C Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

D Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

Câu 14. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

B Số cạnh của khối chóp bằng số mặt của khối chóp.

C Số đỉnh của khối chóp bằng số cạnh của khối chóp.

D Số đỉnh của khối chóp bằng số mặt của khối chóp.

Câu 15. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 16. Tính lim n −1

n2+ 2

Câu 17. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 18. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 19. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 20. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√ 3

2√

3√ 3

24 .

Câu 21. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 22. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 23. Khối đa diện đều loại {4; 3} có số cạnh

Câu 24. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Trang 3

Câu 25. [1] Đạo hàm của làm số y = log x là

A y0 = 1

0 = 1

xln 10. C.

1

0 = ln 10

x .

Câu 26 Trong các khẳng định sau, khẳng định nào sai?

A Cả ba đáp án trên.

B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

C Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

Câu 27. Khối đa diện đều loại {4; 3} có số mặt

Câu 28. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3√

3

2a3

4a3

2a3√ 3

3 .

Câu 29. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 30. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 31. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

2

a3√3

a3√3

a3√6

48 .

Câu 32. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 33. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

A. 1

ln 2

Câu 34. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 35. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 36. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

3

#

5

#

"

−2

3;+∞

! D. " 2

5;+∞

!

Câu 37. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y

A Pmin= 18

11 − 29

21 B Pmin = 9

11+ 19

9 . C Pmin = 9

11 − 19

9 . D Pmin= 2

11 − 3

Câu 38. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 39. Tứ diện đều thuộc loại

Trang 4

Câu 40. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ log23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 41. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 42. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

B Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

D Hàm số nghịch biến trên khoảng (−2; 1).

Câu 43. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey+ 1 B xy0 = −ey+ 1 C xy0 = ey

− 1

Câu 44. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 45. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 3S h B V = 1

3S h. C V = 1

2S h. D V = S h

Câu 46. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 47. Khối lập phương thuộc loại

Câu 48. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 49. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 50. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

Câu 51. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

3√

3√ 3

a3

√ 3

6 .

Câu 52. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3

√ 2

a3

√ 2

a3

√ 2

4 .

Câu 53. [1] Tập xác định của hàm số y= 2x−1là

A. D = R B. D = R \ {1} C. D = R \ {0} D. D = (0; +∞)

Trang 5

Câu 54. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 55. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 56. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 57. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3

a3√ 5

a3√ 15

a3√ 15

5 .

Câu 58. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 59. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

√ 2

Câu 60 Phát biểu nào sau đây là sai?

C lim 1

nk = 0 với k > 1 D lim √1

n = 0

Câu 61. Dãy số nào có giới hạn bằng 0?

A un= n3− 3n

n+ 1 . B un = 6

5

!n C un = −2

3

!n D un = n2− 4n

Câu 62. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 63. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là 1 − √2, phần ảo là −

3 B Phần thực là √2, phần ảo là 1 −

√ 3

C Phần thực là

2 − 1, phần ảo là

2 − 1, phần ảo là −

√ 3

Câu 64. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

B Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

C Nếu

Z

f(x)dx=

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R

D Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

Câu 65. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

5

Câu 66. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

Câu 67. Khối đa diện đều loại {3; 5} có số đỉnh

Trang 6

Câu 68 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

Câu 69. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 70. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

a

2a

a√2

3 .

Câu 71. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

38

3a√58

3a

a√38

29 .

Câu 72. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 73. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 1

2.

Câu 74. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 75 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C B. Z f(x)dx

!0

= f (x)

C.

Z

k f(x)dx= kZ f(x)dx, k là hằng số D.

Z

f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C

Câu 76. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 77. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 4035

2016

2017

2018.

Câu 78. Bát diện đều thuộc loại

Câu 79. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

Câu 80. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

Trang 7

Câu 81. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

Câu 82. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 83. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A.

3

1

3

2.

Câu 84. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

A. abc

b2+ c2

a2+ b2+ c2 B. b

a2+ c2

a2+ b2+ c2 C. a

b2+ c2

a2+ b2+ c2 D. c

a2+ b2

a2+ b2+ c2

Câu 85. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A a

√ 2

a√2

√ 2

Câu 86. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 87. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 88. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

Câu 89. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 90. Cho hàm số y= x3

− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 91. Khối đa diện đều loại {3; 5} có số mặt

Câu 92. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh của khối chóp bằng 2n.

B Số đỉnh của khối chóp bằng 2n+ 1

C Số mặt của khối chóp bằng 2n+1.

D Số mặt của khối chóp bằng số cạnh của khối chóp.

Câu 93. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 94. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Trang 8

Câu 95. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

A. 5

2.

Câu 96. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 2ac

3b+ 2ac

3b+ 3ac

c+ 1 .

Câu 97. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

A m > −5

5

4 < m < 0 C m ≤ 0 D m ≥ 0.

Câu 98. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 99. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 4a

3√

3

8a3√3

a3√3

8a3√3

3 .

Câu 100. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc

60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. a

3√

3

2a3√ 3

4a3√ 3

5a3√ 3

3 .

Câu 101. Cho hàm số y= x3

− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số nghịch biến trên khoảng (−∞; 0).

C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (1;+∞)

Câu 102. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 103. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 104. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 105. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

Câu 106. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A= a√3 Thể tích của khối chóp S ABCD là

A a3

3√ 3

a3

a3√ 3

12 .

Câu 107. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều đúng B Chỉ có (I) đúng C Cả hai đều sai D Chỉ có (II) đúng.

Trang 9

Câu 108. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3abằng

1

Câu 109. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối 20 mặt đều D Khối bát diện đều.

Câu 110. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 111. Tính lim

x→3

x2− 9

x −3

Câu 112. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 113. Tính limcos n+ sin n

n2+ 1

Câu 114. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối bát diện đều D Khối lập phương.

Câu 115. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

27.

Câu 116. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 117. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 118. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 119. [1] Tính lim1 − 2n

3n+ 1 bằng?

A. 2

1

2

3.

Câu 120. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 3 đỉnh, 3 cạnh, 3 mặt B 4 đỉnh, 8 cạnh, 4 mặt C 4 đỉnh, 6 cạnh, 4 mặt D 6 đỉnh, 6 cạnh, 4 mặt.

Câu 121. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= loga2 B log2a= 1

log2a. C log2a= − loga2 D log2a= 1

loga2.

Câu 122. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

26 .

Câu 123. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√6

a3√6

a3√2

6 .

Trang 10

Câu 124. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 2

5n − 3n2 B un = n2+ n + 1

(n+ 1)2 C un = n2− 3n

n2 D un = 1 − 2n

5n+ n2

Câu 125. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 126. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 127. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A. " 5

2; 3

!

"

2;5 2

!

Câu 128. [3-1214d] Cho hàm số y= x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A.

√ 2

Câu 129. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tứ giác.

B Một hình chóp tam giác và một hình chóp tứ giác.

C Hai hình chóp tam giác.

D Một hình chóp tứ giác và một hình chóp ngũ giác.

Câu 130. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

-2

3.

HẾT

Ngày đăng: 07/04/2023, 23:01