1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 4 (710)

12 2 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 4 (710)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 151,87 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho lăng trụ đứng ABC A′B′C′ có đáy là tam giác vuông tại A, AC = a, ÂCB = 60◦ Đường chéo BC′ của mặt bên[.]

Trang 1

Free LATEX

(Đề thi có 11 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Cho lăng trụ đứng ABC.A0B0C0 có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. 4a

3√

6

2a3√ 6

a3√ 6

3√ 6

Câu 2. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 3. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng số cạnh của khối chóp.

B Số đỉnh của khối chóp bằng 2n+ 1

C Số cạnh của khối chóp bằng 2n.

D Số mặt của khối chóp bằng 2n+1.

Câu 4 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0 B.

Z

f(x)g(x)dx=

Z

f(x)dx

Z g(x)dx

C.

Z

( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx D.

Z ( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx

Câu 5. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey+ 1 B xy0 = −ey

Câu 6 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

B.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

C.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

D.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

Câu 7. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 8. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 9. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

1

e3

Câu 10. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Trang 2

Câu 11. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

2x ln x. B y

0 = 1

0 = 2x ln 2 D y0 = 2x ln x

Câu 12. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 13. Xác định phần ảo của số phức z= (√2+ 3i)2

√ 2

Câu 14. Khối đa diện đều loại {4; 3} có số mặt

Câu 15. Dãy số nào sau đây có giới hạn khác 0?

A. √1

sin n

1

n+ 1

n .

Câu 16. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 17. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 18. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

a2+ b2 B. ab

a2+ b2 C. √ ab

2

a2+ b2

Câu 19. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 3 đỉnh, 3 cạnh, 3 mặt B 6 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 8 cạnh, 4 mặt D 4 đỉnh, 6 cạnh, 4 mặt.

Câu 20 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 21. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 22. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

A.

Câu 23. Tính lim

x→1

x3− 1

x −1

Câu 24. [2] Tập xác định của hàm số y= (x − 1)1

A. D = (1; +∞) B. D = R \ {1} C. D = (−∞; 1) D. D = R

Câu 25. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

15

a3√15

a3√5

a3

3 .

Trang 3

Câu 26. Khối đa diện đều loại {3; 4} có số cạnh

Câu 27. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x

lần lượt là

A 2

2 và 3

Câu 28 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

Câu 29. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

a2+ c2

a2+ b2+ c2 B. a

b2+ c2

a2+ b2+ c2 C. abc

b2+ c2

a2+ b2+ c2 D. c

a2+ b2

a2+ b2+ c2

Câu 30. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±√2 B m= ±3 C m= ±√3 D m= ±1

Câu 31. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 32. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

A. 1

ln 2

Câu 33. Khối đa diện đều loại {4; 3} có số cạnh

Câu 34. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 35. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 36. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 37. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 2ac

3b+ 3ac

3b+ 2ac

3b+ 3ac

c+ 1 .

Câu 38. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A. 12

17

√ 68

Câu 39. Hàm số y= x + 1

x có giá trị cực đại là

Câu 40. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

C lim

x→a + f(x)= lim

x→a − f(x)= +∞

Câu 41. Khối đa diện đều loại {3; 5} có số đỉnh

Trang 4

Câu 42. Cho I = 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 43. Thể tích của khối lập phương có cạnh bằng a

√ 2

3√ 2

√ 2

Câu 44. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 45. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

9.

Câu 46. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

7

a2√2

11a2

a2√5

16 .

Câu 47. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3

a3√ 3

3√ 3

9 .

Câu 48. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 3S h B V = 1

2S h. C V = 1

3S h. D V = S h

Câu 49. Tính giới hạn lim2n+ 1

3n+ 2

A. 3

2

1

2.

Câu 50. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 9 cạnh, 5 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 6 mặt.

Câu 51. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A. 2

Câu 52. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 53. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Trang 5

Câu 54 Phát biểu nào sau đây là sai?

n = 0

C lim 1

Câu 55. Khối lập phương thuộc loại

Câu 56. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 57. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 58. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A −2 ≤ m ≤ −1 B −2 < m < −1 C (−∞; −2) ∪ (−1; +∞) D (−∞; −2]∪[−1; +∞) Câu 59. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 60. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. 2a

3

a√3

a√3

√ 3

Câu 61. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A. " 2

5;+∞

!

3

#

"

−2

3;+∞

!

5

#

Câu 62. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 63. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là −3, phần ảo là −4 B Phần thực là 3, phần ảo là −4.

C Phần thực là −3, phần ảo là 4 D Phần thực là 3, phần ảo là 4.

Câu 64. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 65. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 66. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 67. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Trang 6

Câu 68. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 69 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 22 triệu đồng B 2, 25 triệu đồng C 3, 03 triệu đồng D 2, 20 triệu đồng.

Câu 70. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

B Nếu

Z

f(x)dx=

Z g(x)dx thì f (x)= g(x), ∀x ∈ R

C Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

D Nếu

Z

f0(x)dx =

Z

g0(x)dx thì f (x) = g(x), ∀x ∈ R

Câu 71. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều đúng B Chỉ có (I) đúng C Cả hai đều sai D Chỉ có (II) đúng.

Câu 72. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A.

5.

Câu 73. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

A. 2

Câu 74. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 75. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 76. Khối đa diện đều loại {3; 5} có số mặt

Câu 77. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

Câu 78. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối bát diện đều D Khối lập phương.

Câu 79. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 80. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Trang 7

Câu 81. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

2a3

√ 6

a3

√ 3

a3

√ 6

12 .

Câu 82. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 83. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 84. Dãy số nào có giới hạn bằng 0?

A un= 6

5

!n

B un = −2

3

!n C un = n3− 3n

n+ 1 . D un = n2

− 4n

Câu 85. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.(1, 01)3

(1, 01)3− 1 triệu.

C m = 120.(1, 12)3

(1, 12)3− 1 triệu. D m = 100.1, 03

3 triệu.

Câu 86. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 87. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 88. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

√ 2

√ 2

Câu 89. Dãy số nào sau đây có giới hạn là 0?

A un= n2+ n + 1

(n+ 1)2 B un = n2− 2

5n − 3n2 C un = n2− 3n

n2 D un = 1 − 2n

5n+ n2

Câu 90. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

2.

Câu 91. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 92. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Trang 8

Câu 93. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)g(x)]= ab B lim

x→ +∞

f(x) g(x) = a

b.

C lim

x→ +∞[ f (x) − g(x)]= a − b D lim

x→ +∞[ f (x)+ g(x)] = a + b

Câu 94. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. 2a

3√

3

4a3√ 3

a3

a3

3 .

Câu 95. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

B Hàm số nghịch biến trên khoảng (−2; 1).

C Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

D Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

Câu 96. Khối đa diện đều loại {3; 3} có số mặt

Câu 97. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 98. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 99. [1] Tính lim1 − 2n

3n+ 1 bằng?

A. 1

2

2

3.

Câu 100. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 101. Hàm số f có nguyên hàm trên K nếu

C f (x) có giá trị lớn nhất trên K D f (x) có giá trị nhỏ nhất trên K.

Câu 102. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 103. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

log2a. B log2a= loga2 C log2a= − loga2 D log2a= 1

loga2.

Câu 104. [4-1212d] Cho hai hàm số y= x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y= |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 105. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A. a

6

√ 6

Trang 9

Câu 106. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc

60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 2a

3√

3

5a3

√ 3

a3

√ 3

4a3

√ 3

3 .

Câu 107. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3√

3

a3√3

a3

3

Câu 108. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

2.

Câu 109. Tính limcos n+ sin n

n2+ 1

Câu 110. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

Câu 111. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 − 2 log 2x

x3 C y0 = 1 − 2 ln 2x

x3ln 10 . D y

2x3ln 10.

Câu 112. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

Câu 113. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 114. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số nghịch biến trên khoảng (1;+∞)

C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (0; 1).

Câu 115. Tính lim 5

n+ 3

Câu 116. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= 2i B P= −1+ i

√ 3

√ 3

Câu 117. [3-1214d] Cho hàm số y= x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

√ 2

Câu 118. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 119. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối 20 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối 12 mặt đều.

Trang 10

Câu 120. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

Câu 121. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

5

Câu 122. Cho hàm số y= x3

− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng 1

3; 1

!

3

!

C Hàm số đồng biến trên khoảng 1

3; 1

!

Câu 123. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

√ 3

Câu 124. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 125. [1] Đạo hàm của làm số y = log x là

A y0 = 1

1

0 = 1

xln 10. D y

0 = ln 10

x .

Câu 126. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

√ 2

Câu 127. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

2 .

Câu 128. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 129. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 130. Tứ diện đều thuộc loại

HẾT

Ngày đăng: 07/04/2023, 23:00