1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 4 (129)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 4 (129)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 152,69 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Xác định phần ảo của số phức z = ( √ 2 + 3i)2 A 7 B −7 C −6 √ 2 D 6 √ 2 Câu 2 [4 1121h] Cho hình chóp S AB[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

√ 2

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

5

11a2

a2√2

a2√7

8 .

∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

√ 2

√ 2

2 .

thành

A Một hình chóp tứ giác và một hình chóp ngũ giác.

B Hai hình chóp tam giác.

C Hai hình chóp tứ giác.

D Một hình chóp tam giác và một hình chóp tứ giác.

A lim

x→a + f(x)= lim

x→a + f(x)= lim

x→a − f(x)= +∞

C f (x) có giới hạn hữu hạn khi x → a D lim

x→af(x)= f (a)

3|x−1| = 3m−2 có nghiệm duy nhất?

x→2

x2− 5x+ 6

x −2

x→−1(x2− x+ 7) bằng?

Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 4a

3√

3

8a3√ 3

a3√ 3

8a3√ 3

9 .

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. a

3√

6

4a3√6

3√

3√ 6

3 .

Trang 2

Câu 12. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A − 23

5

13

9

25.

đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 3

a3

√ 3

a3

4 .

−1

Câu 17. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

A un= n2+ n + 1

(n+ 1)2 B un = n2− 2

5n − 3n2 C un = 1 − 2n

5n+ n2 D un = n2− 3n

n2

lên?

a2bằng

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 < m ≤ 3

9

3

4.

A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

B F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

C.

Z

u0(x)

u(x)dx= log |u(x)| + C

D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

Trang 3

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.

Trong hai khẳng định trên

A Chỉ có (II) đúng B Cả hai đều sai C Cả hai đều đúng D Chỉ có (I) đúng.

√ 2

3√ 2

3√ 2

x − m nghịch biến trên khoảng (0;+∞)?

Câu 30. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

A.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 B.

Z

f(x)g(x)dx=Z f(x)dx

Z g(x)dx

C.

Z

( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx D.

Z ( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx

A Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

B Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

C Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

D Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

A lim 1

n = 0

C lim qn= 0 (|q| > 1) D lim un= c (un = c là hằng số)

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

3

2.

A y0 = x + ln x B y0 = ln x − 1 C y0 = 1 − ln x D y0 = 1 + ln x

trị của hàm số tại x= −2

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2017 B T = 1008 C T = 2016 D T = 2016

2017.

Trang 4

Câu 39. [2] Cho hình lâp phương ABCD.A BC D cạnh a Khoảng cách từ C đến AC bằng

A. a

3

a√6

a√6

a√6

3 .

x có giá trị cực đại là

hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

3, 38

A 4 đỉnh, 8 cạnh, 4 mặt B 3 đỉnh, 3 cạnh, 3 mặt C 4 đỉnh, 6 cạnh, 4 mặt D 6 đỉnh, 6 cạnh, 4 mặt.

x→1(3x2− 2x+ 1)

d0?

A 6 đỉnh, 9 cạnh, 6 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.

A |z| = 2√5 B |z|= √4

(−∞;+∞)

giữa hai đường thẳng S B và AD bằng

A. a

2

√ 2

√ 2

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A a

√ 57

a√57

a√57

17 .

A log2a= − loga2 B log2a= 1

loga2. C log2a= loga2 D log2a= 1

log2a.

Câu 52. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab +1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

A. 7

5

2.

log715 − log71530 bằng

Trang 5

Câu 54. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 9

11 − 19

9 . B Pmin = 9

11+ 19

9 . C Pmin = 18

11 − 29

21 D Pmin= 2

11 − 3

A f (x) có giá trị lớn nhất trên K B f (x) liên tục trên K.

Câu 57. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

− z

A P= −1+ i

√ 3

√ 3

2 . D P= 2i

A. 1

n+ 1

sin n

1

n.

A Khối tứ diện đều B Khối bát diện đều C Khối 20 mặt đều D Khối 12 mặt đều.

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A 2a2

3√ 3

a3√ 2

a3√ 3

24 .

A Khối tứ diện đều B Khối bát diện đều C Khối lập phương D Khối 12 mặt đều.

A Không thay đổi B Giảm đi n lần C Tăng lên (n − 1) lần D Tăng lên n lần.

x2 là

A y0 = 1 − 2 log 2x

x3 B y0 = 1 − 2 ln 2x

x3ln 10 . C y

0 = 1 − 4 ln 2x 2x3ln 10 . D y

0 = 1 2x3ln 10.

Trang 6

Câu 69. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

A. 1

1

cos x trên đoạn

 0;π 2

 là

√ 2

2 e

π

2e

π

√ 3

2 e

π

6

thứ 5 đến giây thứ 15 là bao nhiêu?

A. D = (−∞; 1) B. D = R \ {1} C. D = (1; +∞) D. D = R

Khoảng cách từ A đến mặt phẳng (S BC) bằng

P= (2x2+ y)(2y2+ x) + 9xy là

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey+ 1 B xy0 = ey+ 1 C xy0 = −ey

− 1 D xy0 = ey

− 1

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

2.

Z 1

0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

A Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

B Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

D Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A.

"

2;5

2

!

B. " 5

2; 3

!

Trang 7

Câu 82. Tứ diện đều thuộc loại

Câu 83. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Hai khối chóp tứ giác.

B Một khối chóp tam giác, một khối chóp ngữ giác.

C Một khối chóp tam giác, một khối chóp tứ giác.

D Hai khối chóp tam giác.

x→2

x+ 2

x bằng?

cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√ 5

a3√ 5

a3√ 3

12 .

[1; e] Giá trị của T = M + m bằng

A T = 4 +2

e. B T = e + 2

e. C T = e + 3 D T = e + 1

A y = x4− 2x+ 1 B y= x3− 3x C y= x −2

2x+ 1. D y= x +

1

x.

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2 (e) là:

A. 1

1

8

8

9.

x→ +∞

x −2

x+ 3

Câu 92. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x+3trên đoạn [0; 2] là

A Phần thực là −3, phần ảo là −4 B Phần thực là 3, phần ảo là −4.

C Phần thực là −3, phần ảo là 4 D Phần thực là 3, phần ảo là 4.

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

A Phần thực là −1, phần ảo là −4 B Phần thực là 4, phần ảo là −1.

C Phần thực là −1, phần ảo là 4 D Phần thực là 4, phần ảo là 1.

Trang 8

Câu 97. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 98. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

log4(x2+ y2)?

mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 103. [1] Giá trị của biểu thức 9log3 12bằng

A.

Z

f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C B. Z f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C

C.

Z

f(x)dx

!0

Z

k f(x)dx= kZ f(x)dx, k là hằng số

A. D = R \ {1} B. D = R \ {0} C. D = R D. D = (0; +∞)

vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 6

a3√ 3

2a3√ 6

9 .

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng (0; 1).

C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (−∞; 0).

rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Trang 9

Câu 111. Tính giới hạn lim2n+ 1

3n+ 2

A. 1

3

2

x→−∞

x+ 1 6x − 2 bằng

1

1

6.

A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối 20 mặt đều.

phẳng ACC0A0bằng

2

a2+ b2 B. ab

a2+ b2 C. √ ab

a2+ b2 D. √ 1

a2+ b2

nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.1, 03

3 triệu.

C m = 120.(1, 12)3

(1, 12)3− 1 triệu. D m = (1, 01)3

(1, 01)3− 1 triệu.

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3

√ 2

3√

3√ 3

4 .

với (S BC) Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 3

a3√ 2

a3√ 3

12 .

− 5x = 20 là

A. 4

e

!n

3

!n

3

!n

3

!n

x+ 5m đồng biến trên khoảng (−∞; −10)?

Trang 10

Câu 124. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 125. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

điểm đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

P= xy + x + 2y + 17

Câu 128. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

5.

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)g(x)]= ab B lim

x→ +∞[ f (x) − g(x)]= a − b

C lim

x→ +∞

f(x)

g(x) = a

45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

5

a3√15

a3√15

a3

3 .

HẾT

Trang 11

-ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Trang 12

69 A 70 B

Ngày đăng: 07/04/2023, 22:32

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm