1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 4 (236)

13 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 4 (236)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 13
Dung lượng 148,51 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã ch[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

3, 38

Câu 2. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

A. 1

Câu 3. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 4. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

16 .

Câu 5. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 3, 5 triệu đồng B 50, 7 triệu đồng C 70, 128 triệu đồng D 20, 128 triệu đồng.

Câu 6. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến∆ Lấy A, B thuộc

∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A 2a

√ 2

a√2

√ 2

Câu 7. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 8. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 9. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3

3√

3√ 3

a3√ 3

12 .

Câu 10. Khối đa diện đều loại {3; 3} có số cạnh

Câu 11. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số đồng biến trên khoảng (1; 2) B Hàm số nghịch biến trên khoảng (1;+∞)

C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số nghịch biến trên khoảng (0; 1).

Câu 12. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 13. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. 2a

57

a√57

√ 57

17 .

Trang 2

Câu 14. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 15. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 16 Mệnh đề nào sau đây sai?

A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

D.

Z

f(x)dx

!0

= f (x)

Câu 17. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 18. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

a√3

√ 3

2 .

Câu 19. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

5

2.

Câu 20. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 21 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

B.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

C.

Z

[ f (x)+ g(x)]dx =

Z

f(x)dx+

Z g(x)dx, với mọi f (x), g(x) liên tục trên R

D.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

Câu 22. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

2.

Trang 3

Câu 23. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2

− 2 ln x trên [e−1; e] là

A M = e2− 2; m = e−2+ 2 B M = e−2− 2; m= 1

C M = e−2+ 2; m = 1 D M = e−2+ 1; m = 1

Câu 24. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

√ 3

√ 3

3

4.

Câu 25. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối bát diện đều B Khối tứ diện đều C Khối 20 mặt đều D Khối 12 mặt đều.

Câu 26. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3

a3

√ 3

a3

√ 3

a3

√ 3

4 .

Câu 27. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

1

1

e2

Câu 28. Tính lim

x→2

x+ 2

x bằng?

Câu 29. Khối lập phương thuộc loại

Câu 30. Khối đa diện đều loại {3; 4} có số cạnh

Câu 31. Tính lim n −1

n2+ 2

Câu 32. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A a

√ 2

a√2

√ 2

Câu 33. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 34. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = 1

e, m = 0 B M= e, m = 0 C M = e, m = 1 D M = e, m = 1

e.

Câu 35. Khối chóp ngũ giác có số cạnh là

Câu 36. Tìm giới hạn lim2n+ 1

n+ 1

Câu 37. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 2017

4035

2016

Câu 38. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Trang 4

Câu 39. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)g(x)]= ab B lim

x→ +∞[ f (x)+ g(x)] = a + b

C lim

x→ +∞[ f (x) − g(x)]= a − b D lim

x→ +∞

f(x) g(x) = a

b.

Câu 40. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

√ 3

Câu 41. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 42. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 43. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

e.

Câu 44. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

ln 2

2 .

Câu 45. Hàm số y= x3

− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 46. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 47. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 48. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

√ 3

Câu 49. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 50. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 51. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Trang 5

Câu 52. [4-1214h] Cho khối lăng trụ ABC.A BC , khoảng cách từ C đến đường thẳng BB bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và

3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

√ 3

Câu 53. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 54. Khối đa diện đều loại {3; 3} có số mặt

Câu 55. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 56. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 57. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 58. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

B Cả ba câu trên đều sai.

C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

D F(x)= G(x) trên khoảng (a; b)

Câu 59. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng 1

3; 1

! B Hàm số nghịch biến trên khoảng −∞;1

3

!

C Hàm số đồng biến trên khoảng 1

3; 1

! D Hàm số nghịch biến trên khoảng (1;+∞)

Câu 60. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều sai B Chỉ có (I) đúng C Chỉ có (II) đúng D Cả hai đều đúng.

Câu 61. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

A. 1

2

Câu 62. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

4.

Câu 63. Giá trị của lim

x→1(3x2− 2x+ 1)

Trang 6

Câu 64. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai câu trên sai D Cả hai câu trên đúng.

Câu 65. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 66. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 67. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. a

5a

8a

2a

9 .

Câu 68. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.1, 03

(1, 12)3− 1 triệu.

C m = 100.(1, 01)3

(1, 01)3− 1 triệu.

Câu 69. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 70. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối bát diện đều B Khối 20 mặt đều C Khối 12 mặt đều D Khối tứ diện đều.

Câu 71. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 72. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 73 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

Z

dx = x + C, C là hằng số

C.

Z

1

xdx= ln |x| + C, C là hằng số D.

Z

xαdx= xα+1

α + 1+ C, C là hằng số.

Câu 74. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

6.

Trang 7

Câu 75. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 76. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 77. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. a

57

√ 57

a√57

17 .

Câu 78. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 79. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 80. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

a2+ b2 B. ab

a2+ b2 C. √ ab

2

a2+ b2

Câu 81. Tính lim 2n

2− 1 3n6+ n4

A. 2

Câu 82. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −1

2;+∞

!

2;+∞

!

2

!

2

!

Câu 83. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 3 lần B Tăng gấp 9 lần C Tăng gấp 27 lần D Tăng gấp 18 lần.

Câu 84. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

A −5

4 < m < 0 B m ≥ 0 C m > −5

Câu 85. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A a

√ 6

2 .

Câu 86. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 87. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 9

3

3

4.

Câu 88. Khối đa diện đều loại {5; 3} có số đỉnh

Trang 8

Câu 89. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln x B y0 = 1

0 = 1

2x ln x. D y

0 = 2x ln 2

Câu 90. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 6 lần B Tăng gấp đôi C Tăng gấp 4 lần D Tăng gấp 8 lần.

Câu 91 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx

!0

Z

k f(x)dx= kZ f(x)dx, k là hằng số

C.

Z

f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C D. Z f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C

Câu 92. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 93. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 94. Biểu thức nào sau đây không có nghĩa

Câu 95. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

C Câu (II) sai D Câu (I) sai.

Câu 96. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 97. Tính lim

x→−∞

x+ 1 6x − 2 bằng

1

1

3.

Câu 98. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 99. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Trang 9

Câu 100. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có f0(x)= F(x)

B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

C Với mọi x ∈ [a; b], ta có F0(x)= f (x)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 101. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

√ 3

Câu 102. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

3

a3

√ 2

a3

√ 2

3√ 3

Câu 103. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 104. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 105. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = S h B V = 1

3S h. C V = 1

2S h. D V = 3S h

Câu 106. Tính lim

x→ +∞

x −2

x+ 3

Câu 107. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

√ 3

3

1

2.

Câu 108. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

D Hàm số nghịch biến trên khoảng (−2; 1).

Câu 109. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1 thỏa mãn |z1− 2 − i| = 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1gần giá trị nào nhất?

Câu 110. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 111. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 112. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 113. Cho các dãy số (un) và (vn) và lim un = a, lim vn= +∞ thì limun

vn bằng

Trang 10

Câu 114. [2D1-3] Cho hàm số y = −1

3x

3+mx2+(3m+2)x+1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A −2 < m < −1 B (−∞; −2) ∪ (−1; +∞) C −2 ≤ m ≤ −1 D (−∞; −2] ∪ [−1;+∞)

Câu 115. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 116. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

Câu 117. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2√3 Thể tích khối nón đã cho là

A V = πa3

√ 6

6 . B V = πa3

√ 3

3 . C V = πa3

√ 3

2 . D V = πa3

√ 3

6 .

Câu 118. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 119. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các số tự nhiên Tính S = m2+ 2n3

Câu 120. Tìm giá trị của tham số m để hàm số y= −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 121. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 122. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3

√ 3

a3

√ 6

a3

√ 6

48 .

Câu 123 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 124. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

B Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

C Nếu

Z

f0(x)dx =

Z

g0(x)dx thì f (x) = g(x), ∀x ∈ R

Ngày đăng: 07/04/2023, 22:31