1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 4 (9)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 4 (9)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 147,55 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1] Giá trị của biểu thức log 1 3√10 bằng A − 1 3 B 3 C 1 3 D −3 Câu 2 Trong các khẳng định dưới đây có ba[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [1] Giá trị của biểu thức log √31

10 bằng

A −1

1

Câu 2. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 3. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

1

1

2.

Câu 4 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

B Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

C Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

D Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

Câu 5. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 log 2x

x3 B y0 = 1 − 2 ln 2x

x3ln 10 . C y

2x3ln 10. D y

0 = 1 − 4 ln 2x 2x3ln 10 .

Câu 6. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 7. Tính lim

x→1

x3− 1

x −1

Câu 8 Các khẳng định nào sau đây là sai?

A.

Z

k f(x)dx= kZ f(x)dx, k là hằng số B.

Z

f(x)dx

!0

= f (x)

C.

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C D.

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C

Câu 9. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có f0(x)= F(x)

D Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

Trang 2

Câu 10 Phát biểu nào sau đây là sai?

A lim √1

C lim 1

nk = 0 với k > 1 D lim un= c (Với un = c là hằng số)

Câu 11. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối lập phương C Khối tứ diện đều D Khối bát diện đều.

Câu 12. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 13. [1] Tính lim1 − 2n

3n+ 1 bằng?

2

1

3.

Câu 14. Khối đa diện đều loại {5; 3} có số mặt

Câu 15. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

2.

Câu 16. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3

a3

√ 6

a3

√ 6

a3

√ 6

24 .

Câu 17. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

Câu 18. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 19. Dãy số nào sau đây có giới hạn là 0?

A. 1

3

!n

3

!n

3

!n

e

!n

Câu 20. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3

a3√3

a3

a3√3

4 .

Câu 21. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

A 2

3, 4

3, 38 B 6, 12, 24 C 2, 4, 8 D 8, 16, 32.

Câu 22. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối 20 mặt đều B Khối 12 mặt đều C Khối tứ diện đều D Khối bát diện đều.

Câu 23. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh của khối chóp bằng số mặt của khối chóp.

B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

C Số đỉnh của khối chóp bằng số cạnh của khối chóp.

D Số đỉnh của khối chóp bằng số mặt của khối chóp.

Trang 3

Câu 24. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 25. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3

a3√15

a3√15

a3√5

25 .

Câu 26. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 27. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x

lần lượt là

2 và 3 D 2 và 2

√ 2

Câu 28. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

√ 3

Câu 29. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A −2 ≤ m ≤ −1 B (−∞; −2] ∪ [−1; +∞) C −2 < m < −1 D (−∞; −2) ∪ (−1;+∞)

Câu 30. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 31. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 32. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

2.

Câu 33. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 34. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và

3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

√ 3

3 .

Câu 35. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 5

2.

Câu 36. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 37. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Tăng lên n lần B Tăng lên (n − 1) lần C Giảm đi n lần D Không thay đổi.

Câu 38. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối bát diện đều B Khối lập phương C Khối tứ diện đều D Khối 12 mặt đều.

Trang 4

Câu 39. Tìm m để hàm số y= x3

− 3mx2+ 3m2

có 2 điểm cực trị

Câu 40. Cho hàm số y= x3

− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số đồng biến trên khoảng (1; 2).

C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số nghịch biến trên khoảng (0; 1).

Câu 41. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 42. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 43. Khối đa diện đều loại {4; 3} có số cạnh

Câu 44. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A. 2

Câu 45. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

a2+ b2

a2+ b2+ c2 B. b

a2+ c2

a2+ b2+ c2 C. a

b2+ c2

a2+ b2+ c2 D. abc

b2+ c2

a2+ b2+ c2

Câu 46. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

A. 27

Câu 47. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

Câu 48. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

6

a3√ 3

a3√ 3

a3√ 2

16 .

Câu 49. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 50. Tính giới hạn lim2n+ 1

3n+ 2

2

3

2.

Câu 51. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp ngữ giác.

B Hai khối chóp tứ giác.

C Hai khối chóp tam giác.

D Một khối chóp tam giác, một khối chóp tứ giác.

Câu 52. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

A −1

1

3.

Trang 5

Câu 53. Khẳng định nào sau đây đúng?

A Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

B Hình lăng trụ tứ giác đều là hình lập phương.

C Hình lăng trụ đứng là hình lăng trụ đều.

D Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

Câu 54. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 55. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln x B y0 = 1

0 = 2x ln 2 D y0 = 1

2x ln x.

Câu 56. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 57. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

a2+ b2 B. ab

2√a2+ b2 D. √ ab

a2+ b2

Câu 58. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

2a√57

a

√ 57

√ 57

Câu 59. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

2

a3√3

3

4 .

Câu 60. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

3.

Câu 61. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)+ g(x)] = a + b B lim

f(x) g(x) = a

b.

C lim

x→ +∞[ f (x)g(x)]= ab D lim

x→ +∞[ f (x) − g(x)]= a − b

Câu 62. Khối đa diện đều loại {3; 3} có số mặt

Câu 63. Hàm số f có nguyên hàm trên K nếu

C f (x) có giá trị lớn nhất trên K D f (x) có giá trị nhỏ nhất trên K.

Câu 64. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 65. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Trang 6

Câu 66. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 67. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = 3a3

√ 3

2 . B V = 6a3 C V = 3a3√

3 D V = a3

√ 3

2 .

Câu 68. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 69. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 70. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 71. Khối đa diện đều loại {4; 3} có số mặt

Câu 72. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

3

a3

√ 3

a3

√ 3

3 .

Câu 73. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3

a3

a3√ 3

3

Câu 74. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 75. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Chỉ có (I) đúng B Chỉ có (II) đúng C Cả hai đều sai D Cả hai đều đúng.

Câu 76. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

2

a3√ 3

2

4 .

Câu 77. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

Câu 78. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Trang 7

Câu 79. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

− 1

Câu 80. Bát diện đều thuộc loại

Câu 81. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

4.

Câu 82. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 83. [12214d] Với giá trị nào của m thì phương trình 1

Câu 84. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

15.

Câu 85. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m > 1

1

1

1

4.

Câu 86. Tính lim

x→3

x2− 9

x −3

Câu 87. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 88. [2] Đạo hàm của hàm số y = x ln x là

A y0 = 1 − ln x B y0 = ln x − 1 C y0 = x + ln x D y0 = 1 + ln x

Câu 89. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 90. Biểu thức nào sau đây không có nghĩa

√ 2)0

Câu 91 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

Câu 92. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 93. Khối lập phương thuộc loại

Trang 8

Câu 94. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 95. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3

a3

√ 2

a3

√ 3

a3

√ 3

12 .

Câu 96. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 97. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x

3

#

"

−2

3;+∞

! C. " 2

5;+∞

!

5

#

Câu 98. [1] Tập xác định của hàm số y= 2x−1

A. D = R \ {0} B. D = R \ {1} C. D = R D. D = (0; +∞)

Câu 99 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

B.

Z

[ f (x) − g(x)]dx=

Z

f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

C.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

D.

Z

[ f (x)+ g(x)]dx =

Z

f(x)dx+

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

Câu 100. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 101. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A a

√ 2

a√2

√ 3

Câu 102. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

Câu 103. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

A. 11

9

Câu 104. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 2ac

3b+ 2ac

3b+ 3ac

3b+ 3ac

c+ 1 .

Câu 105. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Trang 9

Câu 106. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 107. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 108. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 109. Tính limcos n+ sin n

n2+ 1

Câu 110. [1] Đạo hàm của làm số y = log x là

0 = ln 10

xln 10. D y

x.

Câu 111. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

2

a3

√ 3

a3

√ 3

2

Câu 112. Khối đa diện đều loại {3; 3} có số cạnh

Câu 113. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 114. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 115. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 116. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 117. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. a

3

a3

√ 3

2a3

√ 3

3

Câu 118. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A.

"

2;5

2

!

B. " 5

2; 3

!

Câu 119. Khối đa diện đều loại {3; 5} có số cạnh

Câu 120. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. 2a

a

a√2

a

4.

Trang 10

Câu 121. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

3

a3

24.

Câu 122. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 123. Khối đa diện đều loại {5; 3} có số cạnh

Câu 124. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tứ giác.

B Một hình chóp tam giác và một hình chóp tứ giác.

C Một hình chóp tứ giác và một hình chóp ngũ giác.

D Hai hình chóp tam giác.

Câu 125. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 2a

a

5a

8a

9 .

Câu 126. Cho hàm số y= −x3+ 3x2

− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0; 2) B Hàm số nghịch biến trên khoảng (0; 2).

C Hàm số đồng biến trên khoảng (0;+∞) D Hàm số nghịch biến trên khoảng (−∞; 2).

Câu 127. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 128. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 129. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 130. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính quãng đường chất điểm đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

HẾT

Ngày đăng: 07/04/2023, 22:26

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN