1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 3 (771)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 3 (771)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 154,89 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó A Tăng[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

A Tăng lên (n − 1) lần B Không thay đổi C Giảm đi n lần D Tăng lên n lần.

(ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

5

a3√15

3√

3√ 6

3 .

Câu 3. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



ứng sẽ:

3

!4x

≤ 3 2

!2−x là

5

#

3

#

"

−2

3;+∞

! D. " 2

5;+∞

!

5 đến giây thứ 15 là bao nhiêu?

Câu 7. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

√ 3

A. 3

√ 3

√ 3

√ 3

12.

A lim1

nk = 0

Câu 10. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

A 8

√ 3

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

57

a√57

√ 57

17 .

A log2a= − loga2 B log2a= 1

loga2. C log2a= 1

log2a. D log2a= loga2

2− 1 3n6+ n4

3.

Trang 2

Câu 14. Cho hàm số y= x3+ 3x2

Mệnh đề nào sau đây là đúng?

A Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

B Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số nghịch biến trên khoảng (−2; 1).

D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

Câu 15. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

A. 5

7

Câu 16. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

2

2e3

Câu 18. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x

lần lượt là

A 2 và 2

2 và 3

ứng sẽ:

A. D = R \ {1} B. D = R \ {0} C. D = (0; +∞) D. D = R

2− 2n3+ 1 3n3+ 2n2+ 1

A -2

7

3.

A F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

B.

Z

u0(x)

u(x)dx= log |u(x)| + C

C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

[a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

Trang 3

Câu 27. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Trục ảo.

B Đường phân giác góc phần tư thứ nhất.

C Trục thực.

D Hai đường phân giác y= x và y = −x của các góc tọa độ

lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 30. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

2e

π

√ 2

2 e

π

√ 3

2 e

π

6

[1; e] Giá trị của T = M + m bằng

A T = 4 +2

e. B T = e + 1 C T = e + 3 D T = e + 2

e.

thẳng BB0và AC0bằng

2

a2+ b2 B. ab

a2+ b2 C. √ ab

a2+ b2 D. √ 1

a2+ b2

A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

D Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

Câu 36. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 < m ≤ 3

9

3

4.

Trang 4

Câu 39. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

phẳng ACC0A0bằng

2√a2+ b2 C. √ ab

a2+ b2 D. ab

a2+ b2

− 3x2− 2 là

(AB0C) và (A0C0D) bằng

A. a

3

2a√3

√ 3

2 .

√ 2

A V = a3√

3√ 2

3√

2 D V = 2a3

A. D = R B. D = (−∞; 1) C. D = R \ {1} D. D = (1; +∞)

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A.

√ 2

vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 6

2a3√ 6

a3√ 3

4 .

người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 48. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

6.

A. a

3√

2

a3√ 2

a3√ 2

a3√ 2

12 .

Câu 51. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 52. [1] Giá trị của biểu thức log √31

10 bằng

A. 1

1

Trang 5

Câu 53. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

x→1(3x2− 2x+ 1)

Câu 56. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 57. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

A. 1

1

Câu 59. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

A Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

B Nếu

Z

f(x)dx=

Z g(x)dx thì f (x)= g(x), ∀x ∈ R

C Nếu

Z

f(x)dx=

Z g(x)dx thì f (x) , g(x), ∀x ∈ R

D Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2(e) là:

A. 1

8

1

8

9.

nhất của |z+ 2 + i|

17

√ 34

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Trang 6

Câu 66. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

a

5a

2a

9 .

Câu 67. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 5 đỉnh, 9 cạnh, 6 mặt.

3|x−1| = 3m − 2 có nghiệm duy nhất?

A.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 B.

Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx

C.

Z

f(x)g(x)dx=

Z

f(x)dx

Z

Z ( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A 6

√ 3

√ 3

3 .

Câu 73. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối 20 mặt đều B Khối tứ diện đều C Khối 12 mặt đều D Khối bát diện đều.

cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3√

3

a3√3

3

3

3 .

3n+ 2

A. 2

1

3

2.

xy+ x + 2y + 17

Câu 79. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A a3

3√ 6

4a3√6

a3√6

3 .

Trang 7

Câu 80. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 81. [1] Giá trị của biểu thức 9log3 12bằng

vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0; 2).

C Hàm số nghịch biến trên khoảng (−∞; 2) D Hàm số đồng biến trên khoảng (0;+∞)

n2+ 1

3n+ 1 bằng?

A. 2

2

1

3.

Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

3√

3

4a3√ 3

2a3√ 3

a3√ 3

2 .

Câu 89. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

− 3x2+ 3x − 4 có bao nhiêu cực trị?

Trang 8

Câu 94. [3-1122h] Cho hình lăng trụ ABC.ABC có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√3

a3√3

a3√3

36 .

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√6

a3√6

a3√2

6 .

A un= n2− 2

5n − 3n2 B un = 1 − 2n

5n+ n2 C un = n2+ n + 1

(n+ 1)2 D un = n2− 3n

n2

ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 120.(1, 12)3

(1, 12)3− 1 triệu. B m = 100.(1, 01)3

3 triệu.

C m = 100.1, 03

(1, 01)3− 1 triệu.

A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

D.

Z

f(x)dx

!0

= f (x)

rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 102. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Trang 9

Câu 105. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A= a√3 Thể tích của khối chóp S ABCD là

A. a

3√

3

3√

3√ 3

a3

4 .

Khoảng cách từ A đến mặt phẳng (S BC) bằng

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

2

11a2

a2√5

a2√7

8 .

là:

√ 3i lần lượt l

A Phần thực là

2, phần ảo là 1 −

2 − 1, phần ảo là

√ 3

C Phần thực là

2 − 1, phần ảo là −

2, phần ảo là −

√ 3

2

!

2;+∞

!

2

!

2;+∞

!

Câu 112. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A.

"

2;5

2

!

2; 3

!

mtan x+ 1 nghịch biến trên khoảng



0;π

4



, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

3

a3

√ 2

a3

√ 2

3√ 3

Câu 115. [4-1244d] Trong tất cả các số phức z= a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

5

23

9

25.

Câu 116. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 10 B f0(0)= 1

ln 10. C f

0 (0)= ln 10 D f0(0)= 1

Trang 10

Câu 118. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 120. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối lập phương B Khối tứ diện đều C Khối bát diện đều D Khối 12 mặt đều.

x→−1(x2− x+ 7) bằng?

Câu 122. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

A −3 − 4

3x

3+mx2+(3m+2)x+1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

2

2a

a

a

4.

n+ 1

Câu 128. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Hai khối chóp tam giác.

B Một khối chóp tam giác, một khối chóp ngữ giác.

C Một khối chóp tam giác, một khối chóp tứ giác.

D Hai khối chóp tứ giác.

A. a

3

a√6

a√6

a√6

7 .

HẾT

Trang 11

-ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Trang 12

70 A 71 C

Ngày đăng: 07/04/2023, 22:21