1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 2 (769)

12 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 2 (769)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 146,96 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến∆ Lấy A, B thuộc

∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

a√2

√ 2

Câu 2. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

Câu 3. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3

a3

√ 15

a3

√ 15

a3

√ 5

25 .

Câu 4. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

Câu 5. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

a3

a3

3

Câu 6. Khẳng định nào sau đây đúng?

A Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

B Hình lăng trụ tứ giác đều là hình lập phương.

C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

D Hình lăng trụ đứng là hình lăng trụ đều.

Câu 7. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 8. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Năm hình chóp tam giác đều, không có tứ diện đều.

B Bốn tứ diện đều và một hình chóp tam giác đều.

C Năm tứ diện đều.

D Một tứ diện đều và bốn hình chóp tam giác đều.

Câu 9. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 10. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Trang 2

Câu 11. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 12. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 13. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A. 1

√ 5

Câu 14. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

2

a3√ 6

a3√ 6

a3√ 6

6 .

Câu 15. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√ 3

a3√ 3

a3√ 3

6 .

Câu 16. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

Câu 17. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 18. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 19. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 20. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 21. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp tứ giác.

B Một khối chóp tam giác, một khối chóp ngữ giác.

C Hai khối chóp tứ giác.

D Hai khối chóp tam giác.

Câu 22. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 23. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

Câu 24. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Trang 3

Câu 25. Cho hàm số y= x3

− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số đồng biến trên khoảng (1; 2).

C Hàm số nghịch biến trên khoảng (0; 1) D Hàm số nghịch biến trên khoảng (1;+∞)

Câu 26 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

B.

Z

[ f (x) − g(x)]dx=

Z

f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

C.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

D.

Z

[ f (x)+ g(x)]dx =

Z

f(x)dx+

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

Câu 27. Tính lim

x→ +∞

x −2

x+ 3

Câu 28. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey+ 1 B xy0 = ey

− 1 D xy0 = ey+ 1

Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 30 Phát biểu nào sau đây là sai?

nk = 0 với k > 1

C lim √1

Câu 31. Khối đa diện đều loại {3; 5} có số mặt

Câu 32. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 3

a3

a3√ 3

8 .

Câu 33. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

Câu 34. Tìm giá trị nhỏ nhất của hàm số y= (x2

− 2x+ 3)2

− 7

Câu 35. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 36. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = S h B V = 1

3S h. C V = 1

2S h. D V = 3S h

Trang 4

Câu 37. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 38. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

3

√ 3

a

√ 3

2 .

Câu 39. Khối chóp ngũ giác có số cạnh là

Câu 40. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 C. √ 1

a2+ b2 D. ab

a2+ b2

Câu 41. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 42. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

A. a

3

a

a

3.

Câu 43. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

a

√ 6

a

√ 6

√ 6

Câu 44. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

Câu 45. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3

√ 3

a3

√ 3

a3

√ 3

6 .

Câu 46. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng 2n+1.

B Số mặt của khối chóp bằng số cạnh của khối chóp.

C Số đỉnh của khối chóp bằng 2n+ 1

D Số cạnh của khối chóp bằng 2n.

Câu 47. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 48. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 49 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C B.

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C

C.

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số D.

Z

f(x)dx

!0

= f (x)

Trang 5

Câu 50. [1] Tập xác định của hàm số y= 4x +x−2là

A. D = [2; 1] B. D = R \ {1; 2} C. D = (−2; 1) D. D = R

Câu 51. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối 20 mặt đều C Khối bát diện đều D Khối 12 mặt đều.

Câu 52. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 53. Cho

Z 1 0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

4.

Câu 54. Khối đa diện đều loại {5; 3} có số cạnh

Câu 55. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 56. Khối đa diện đều loại {3; 3} có số mặt

Câu 57. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 58. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 59 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0 B.

Z ( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx

C.

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx D.

Z

f(x)g(x)dx=

Z

f(x)dx

Z g(x)dx

Câu 60. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A.

3

1

3

2.

Câu 61. [2] Tập xác định của hàm số y= (x − 1)1

A. D = R \ {1} B. D = (−∞; 1) C. D = R D. D = (1; +∞)

Câu 62. Tính lim 2n

2− 1 3n6+ n4

3.

Câu 63. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 64. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

Trang 6

Câu 65. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

2; 3

!

"

2;5 2

!

Câu 66. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

3√

3

8a3√ 3

a3√ 3

4a3√ 3

9 .

Câu 67. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 68. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 69. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

b2+ c2

a2+ b2+ c2 B. c

a2+ b2

a2+ b2+ c2 C. a

b2+ c2

a2+ b2+ c2 D. b

a2+ c2

a2+ b2+ c2

Câu 70. [1] Giá trị của biểu thức log √31

10 bằng

1

3.

Câu 71. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

A −3 − 4

Câu 72. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 73. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 6

a3

√ 6

a3

√ 6

8 .

Câu 74. Hàm số y= x3

− 3x2+ 4 đồng biến trên:

Câu 75. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 76. Hàm số y= x + 1

x có giá trị cực đại là

Câu 77. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tứ giác và một hình chóp ngũ giác.

B Một hình chóp tam giác và một hình chóp tứ giác.

C Hai hình chóp tứ giác.

D Hai hình chóp tam giác.

Câu 78. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Trang 7

Câu 79. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

√ 3

Câu 80. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 81. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

2 .

Câu 82. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 83. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

Câu 84. Giá trị cực đại của hàm số y = x3

− 3x+ 4 là

Câu 85. [2] Cho hàm số f (x)= x ln2

x Giá trị f0(e) bằng

Câu 86. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 87. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 88. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 89. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 90. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {1} B. D = R C. D = (0; +∞) D. D = R \ {0}

Câu 91. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 92. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 93. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 94. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Trang 8

Câu 95. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A. 1

2e

π

√ 3

2 e

π

√ 2

2 e

π

4

Câu 96. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

log2a. D log2a= − loga2

Câu 97. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A a3

3√ 2

a3√3

a3√3

2 .

Câu 98. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 99. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 100. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng 1

3; 1

!

C Hàm số nghịch biến trên khoảng 1

3; 1

!

3

!

Câu 101. [4-1244d] Trong tất cả các số phức z= a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

23

13

5

16.

Câu 102. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 103. Cho khối lăng trụ đứng ABC.A0B0C0có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = 3a3√

3 B V = 3a3

√ 3

2 . C V = 6a3 D V = a3

√ 3

2 .

Câu 104. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối lập phương C Khối 12 mặt đều D Khối bát diện đều.

Câu 105. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 50, 7 triệu đồng B 3, 5 triệu đồng C 20, 128 triệu đồng D 70, 128 triệu đồng.

Câu 106. [1] Đạo hàm của làm số y = log x là

A y0 = 1

0 = 1

xln 10. C.

1

0 = ln 10

x .

Câu 107. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Trang 9

Câu 108. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

5

2.

Câu 109. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối bát diện đều B Khối lập phương C Khối 12 mặt đều D Khối tứ diện đều.

Câu 110. Tính limcos n+ sin n

n2+ 1

Câu 111. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln x B y0 = 1

2x ln x. C y

0 = 2x ln 2 D y0 = 1

ln 2.

Câu 112. Khối đa diện đều loại {3; 4} có số mặt

Câu 113. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 114. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3+3x2+(m−1)x+2m−3 đồng biến trên khoảng

có độ dài lớn hơn 1

5

4 < m < 0

Câu 115. Cho I =Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 116. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 4 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 8 cạnh, 4 mặt C 6 đỉnh, 6 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.

Câu 117. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 118. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

3√

3

3√

3√ 3

a3√ 3

3 .

Câu 119. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 120. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a

√ 3

a

√ 6

a

√ 6

3 .

Câu 121. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3

a3

√ 3

a3

√ 3

3

Câu 122. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A −1

1

Trang 10

Câu 123. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

Câu 124. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính quãng đường chất điểm đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 125. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= ln 10 B f0(0)= 1

ln 10. C f

0 (0)= 10 D f0(0)= 1

Câu 126. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 127. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 128. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 129. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 130. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3

abằng

A. 1

1

HẾT

Ngày đăng: 07/04/2023, 22:07