1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 2 (196)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 2 (196)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 12
Dung lượng 153,7 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho hàm số y = x3 − 2x2 + x + 1 Mệnh đề nào dưới đây đúng? A Hàm số nghịch biến trên khoảng ( −∞; 1 3 ) B[.]

Trang 1

Free LATEX

(Đề thi có 11 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng −∞;1

3

! B Hàm số nghịch biến trên khoảng (1;+∞)

C Hàm số đồng biến trên khoảng 1

3; 1

!

3; 1

!

Câu 2. [1] Tập xác định của hàm số y= 2x−1 là

A. D = R \ {0} B. D = (0; +∞) C. D = R D. D = R \ {1}

Câu 3. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

√ 17

17 .

Câu 4. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 5. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 6. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

5

4 < m < 0

Câu 7. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số đồng biến trên khoảng (1; 2) B Hàm số nghịch biến trên khoảng (1;+∞)

C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số nghịch biến trên khoảng (0; 1).

Câu 8. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

√ 6

Câu 9 Các khẳng định nào sau đây là sai?

A.

Z

k f(x)dx= kZ f(x)dx, k là hằng số B.

Z

f(x)dx

!0

= f (x)

C.

Z

f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C D. Z f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C

Câu 10. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 11. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 12. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 13. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Trang 2

Câu 14. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 3 đỉnh, 3 cạnh, 3 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 8 cạnh, 4 mặt D 6 đỉnh, 6 cạnh, 4 mặt.

Câu 15. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

3

√ 3

√ 3

2 .

Câu 16. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3√

3

a3

3√ 3

2 .

Câu 17 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαbα= (ab)α B. a

α

aβ = aα C aαβ = (aα)β D aα+β = aα.aβ

Câu 18 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

Câu 19. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 20. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 21. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 22. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

5

Câu 23. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

A 3 − 4

Câu 24 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 25 triệu đồng B 2, 20 triệu đồng C 2, 22 triệu đồng D 3, 03 triệu đồng.

Câu 25. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 26. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −1

2;+∞

!

2

!

2;+∞

!

2

!

Câu 27. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 28. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Trang 3

Câu 29. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 30. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 31. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 32. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

loga2. B log2a= − loga2 C log2a= loga2 D log2a= 1

log2a.

Câu 33. [1] Đạo hàm của làm số y = log x là

A y0 = 1

xln 10. B y

0 = 1

1

0 = ln 10

x .

Câu 34. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 35. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2

)?

Câu 36. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 37. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 38. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 39. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

C lim un= 1

Câu 40. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có f0(x)= F(x)

D Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

Trang 4

Câu 41. Tìm m để hàm số y= x4

− 2(m+ 1)x2

− 3 có 3 cực trị

Câu 42 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

Câu 43. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

3√ 6

a3

√ 15

a3

√ 5

3 .

Câu 44. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

B Số đỉnh của khối chóp bằng số mặt của khối chóp.

C Số cạnh của khối chóp bằng số mặt của khối chóp.

D Số đỉnh của khối chóp bằng số cạnh của khối chóp.

Câu 45. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

2

a

2a

a

4.

Câu 46. Tính lim

x→2

x+ 2

x bằng?

Câu 47. Tính giới hạn lim2n+ 1

3n+ 2

2

1

2.

Câu 48. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3 .

Câu 49. Hàm số y= x + 1

x có giá trị cực đại là

Câu 50. [1] Giá trị của biểu thức 9log3 12bằng

Câu 51. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

A. 67

Câu 52. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A a3

3√ 3

a3√2

a3√2

12 .

Câu 53. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x +3trên đoạn [0; 2] là

Trang 5

Câu 54. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 55. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 56. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = a3

3

2 . B V = 3a3

√ 3

2 . C V = 6a3 D V = 3a3√

3

Câu 57. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 58. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

C Phần thực là −1, phần ảo là −4 D Phần thực là 4, phần ảo là 1.

Câu 59. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→a − f(x)= +∞ B lim

x→af(x)= f (a)

C lim

x→a + f(x)= lim

Câu 60. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. a

3√

3

8a3√ 3

4a3√ 3

8a3√ 3

9 .

Câu 61. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 62. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 63. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 64. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và

3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

A. 2

3

Câu 65. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√6

a3√6

a3√6

24 .

Trang 6

Câu 66. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

B Cả ba câu trên đều sai.

C G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

D F(x)= G(x) trên khoảng (a; b)

Câu 67. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 68. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 4035

2016

2017

2018.

Câu 69. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

B Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

C Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

D Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

Câu 70. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3

√ 6

a3

√ 2

a3√3

24 .

Câu 71. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

5

11a2

a2

√ 2

a2

√ 7

8 .

Câu 72. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5

bằng

5.

Câu 73. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 74. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

2 .

Câu 75. [1] Tính lim 1 − n

2 2n2+ 1 bằng?

A −1

1

1

Câu 76. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Trang 7

Câu 77. [12215d] Tìm m để phương trình 4x+ 1−x2 − 4.2x+ 1−x2 − 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 9

3

3

4.

Câu 78. Tính lim

x→3

x2− 9

x −3

Câu 79. Khối đa diện đều loại {3; 5} có số cạnh

Câu 80. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 81. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 2

5n − 3n2 B un = n2+ n + 1

(n+ 1)2 C un = 1 − 2n

5n+ n2 D un = n2− 3n

n2

Câu 82. [1] Tính lim1 − 2n

3n+ 1 bằng?

A. 2

2

1

Câu 83. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3

− z

A P= −1+ i

√ 3

√ 3

Câu 84. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

7

2.

Câu 85. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 86. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 1 B f0(0)= 10 C f0(0)= ln 10 D f0(0)= 1

ln 10.

Câu 87. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 88. Biểu thức nào sau đây không có nghĩa

Câu 89. Tính lim n −1

n2+ 2

Câu 90. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

2a

√ 3

√ 3

2 .

Câu 91. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

A. 3

Trang 8

Câu 92. Bát diện đều thuộc loại

Câu 93. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 94. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 95. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 96. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 97. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

2x ln x. B y

0 = 1

0 = 2x ln 2 D y0 = 2x ln x

Câu 98. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m > 1

1

1

1

4.

Câu 99. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 100. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√ 3

a3√ 3

a3√ 3

12 .

Câu 101. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 102. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối lập phương D Khối bát diện đều.

Câu 103. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 104. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 105. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 106. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

Câu 107. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 108. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Trang 9

Câu 109. [4-1212d] Cho hai hàm số y= x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y= |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 110. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 111. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số nghịch biến trên khoảng (−2; 1).

D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

Câu 112. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3) − √ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 113. Khối đa diện đều loại {4; 3} có số mặt

Câu 114. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

3

a3

12.

Câu 115. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 116. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. 2a

3√

3

3√

3√ 3

a3

√ 3

3 .

Câu 117. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 4 ln 2x 2x3ln 10 . C y

0 = 1 − 2 log 2x

x3 D y0 = 1 − 2 ln 2x

x3ln 10 .

Câu 118. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

Câu 119. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

Trang 10

Câu 120. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

Câu 121. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

√ 3

Câu 122. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 9 lần B Tăng gấp 27 lần C Tăng gấp 3 lần D Tăng gấp 18 lần.

Câu 123. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Giảm đi n lần B Tăng lên (n − 1) lần C Tăng lên n lần D Không thay đổi.

Câu 124. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2 (e) là:

A. 8

1

1

8

9.

Câu 125. Cho hai đường thẳng phân biệt d và d0đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 126. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

A Không có câu nào

sai

Câu 127. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 128. Tìm giới hạn lim2n+ 1

n+ 1

Câu 129. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 130. Dãy số nào sau đây có giới hạn là 0?

A. 5

3

!n

e

!n

3

!n

3

!n

HẾT

Ngày đăng: 07/04/2023, 22:05