1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 2 (801)

13 4 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 2 (801)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 13
Dung lượng 156,02 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [4 1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3 Tìm min |z − 1 − i| A √ 2 B 1 C √ 1[.]

Trang 1

Free LATEX

(Đề thi có 11 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

A.

Câu 2. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

a2+ b2 B. √ ab

2

a2+ b2 D. ab

a2+ b2

Câu 3. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√5

a3√3

a3√5

6 .

Câu 4. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3

abằng

1

Câu 5. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 6 Phát biểu nào sau đây là sai?

A lim un= c (Với un = c là hằng số) B lim √1

n = 0

nk = 0 với k > 1

Câu 7. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

9

3

4.

Câu 8. Khối đa diện đều loại {3; 4} có số cạnh

Câu 9. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3) − √ 6

3x+ 1 Tính

Z 1 0

f(x)dx

Câu 10. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 − 2 log 2x

x3 C y0 = 1 − 2 ln 2x

x3ln 10 . D y

2x3ln 10.

Câu 11. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

A Không có câu nào

sai

Trang 2

Câu 12. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. 2a

3√

6

3√

3√ 6

4a3√ 6

3 .

Câu 13. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 14 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

Câu 15. Tính lim 5

n+ 3

Câu 16. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

38

3a

√ 58

a√38

3a

29.

Câu 17. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 18. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2

− 4M)2019

Câu 19. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2 (e) là:

A. 1

1

8

8

9.

Câu 20. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

3 . B V = πa3

√ 6

6 . C V = πa3

√ 3

6 . D V = πa3

√ 3

2 .

Câu 21. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

3S h. D V = 1

2S h.

Câu 22. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

5

a3

√ 15

a3

√ 15

a3

3 .

Câu 23. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 120.(1, 12)3

(1, 12)3− 1 triệu. B m = (1, 01)3

(1, 01)3− 1 triệu.

Trang 3

C m = 100.1, 03

3 triệu.

Câu 24. Cho

Z 1 0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

2.

Câu 25. Tính lim n −1

n2+ 2

Câu 26 Mệnh đề nào sau đây sai?

A.

Z

f(x)dx

!0

= f (x)

B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

D F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

Câu 27. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 3

a3

√ 2

2√ 2

Câu 28. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

2.

Câu 29. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Chỉ có (II) đúng B Cả hai đều sai C Cả hai đều đúng D Chỉ có (I) đúng.

Câu 30. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

Câu 31. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 32. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

6

a3√ 15

3√

3√ 5

3 .

Câu 33. Cho I = Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 34. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối bát diện đều C Khối 12 mặt đều D Khối 20 mặt đều.

Trang 4

Câu 35. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 36. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có f0(x)= F(x)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 37. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 38. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 39. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 40. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 41 Phát biểu nào sau đây là sai?

C lim 1

n = 0

Câu 42. Khối đa diện đều loại {3; 5} có số mặt

Câu 43. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 44. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= ln 10 B f0(0)= 10 C f0(0)= 1

ln 10. D f

0 (0)= 1

Câu 45. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

√ 3

20√3

3 .

Câu 46. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 47. Bát diện đều thuộc loại

Câu 48. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Trang 5

Câu 49. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60 Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. a

3√

3

2a3√ 3

5a3√ 3

4a3√ 3

3 .

Câu 50. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3√

3

a3

√ 3

4a3

√ 3

8a3

√ 3

3 .

Câu 51. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3√3

a3√6

a3√6

24 .

Câu 52. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối lập phương.

Câu 53. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 54. [4] Xét hàm số f (t)= 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 55. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai câu trên đúng D Cả hai câu trên sai.

Câu 56. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 57. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối bát diện đều D Khối 20 mặt đều.

Câu 58. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A. 12

17

√ 5

Câu 59. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 60. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Trang 6

Câu 61. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 2

5n − 3n2 B un = n2− 3n

n2 C un = n2+ n + 1

(n+ 1)2 D un = 1 − 2n

5n+ n2

Câu 62. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√3

a3√2

a3√6

48 .

Câu 63. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 64. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

Câu 65 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

B.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

C.

Z

k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

D.

Z

[ f (x)+ g(x)]dx =

Z

f(x)dx+

Z g(x)dx, với mọi f (x), g(x) liên tục trên R

Câu 66. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

16 .

Câu 67. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 1008 B T = 2016

2017. C T = 2017 D T = 2016

Câu 68. [1] Tập xác định của hàm số y= 2x−1là

A. D = (0; +∞) B. D = R C. D = R \ {1} D. D = R \ {0}

Câu 69. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3

a3√3

a3√3

a3√3

4 .

Câu 70. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

A. 2

Câu 71. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

A (+∞; −∞) B [3;+∞) C (−∞; 1] D [1;+∞)

Câu 72. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Trang 7

Câu 73. Tính giới hạn lim2n+ 1

3n+ 2

A. 3

1

2

3.

Câu 74. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 75. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 76. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 77. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

√ 3

√ 3

3

4.

Câu 78. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 2ac

3b+ 2ac

3b+ 3ac

c+ 2 .

Câu 79. Tính limcos n+ sin n

n2+ 1

Câu 80. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y

A Pmin= 9

11 − 19

9 . B Pmin = 18

11 − 29

21 C Pmin = 9

11+ 19

9 . D Pmin= 2

11 − 3

Câu 81. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

A. 27

Câu 82. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 83. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối bát diện đều B Khối tứ diện đều C Khối lập phương D Khối 12 mặt đều.

Câu 84. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tam giác và một hình chóp tứ giác.

B Hai hình chóp tam giác.

C Hai hình chóp tứ giác.

D Một hình chóp tứ giác và một hình chóp ngũ giác.

Câu 85. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số nghịch biến trên khoảng (−∞; 0).

C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (1;+∞)

Câu 86. [1] Biết log6 √a= 2 thì log6abằng

Câu 87. Khối chóp ngũ giác có số cạnh là

Trang 8

Câu 88. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 89. Tính lim 2n

2− 1 3n6+ n4

A. 2

Câu 90. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

log2a. B log2a= 1

loga2. C log2a= loga2 D log2a= − loga2

Câu 91. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

2016

4035

2018.

Câu 92. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 93. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

√ 6

a

√ 6

3 .

Câu 94. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

1

3.

Câu 95. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x

lần lượt là

A. √2 và 3 B 2 và 3 C 2 và 2√2 D 2√2 và 3

Câu 96. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

Câu 97. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2] ∪ [−1; +∞) B −2 ≤ m ≤ −1 C −2 < m < −1 D (−∞; −2) ∪ (−1;+∞)

Câu 98. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 99. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 3, 5 triệu đồng B 70, 128 triệu đồng C 50, 7 triệu đồng D 20, 128 triệu đồng.

Trang 9

Câu 100. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

6

a3

√ 3

2a3

√ 6

a3

√ 3

4 .

Câu 101. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

2.

Câu 102. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

5

2.

Câu 103. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

A 2

3, 4

3, 38 B 2, 4, 8 C 8, 16, 32 D 6, 12, 24.

Câu 104. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

Câu 105. Thể tích của khối lập phương có cạnh bằng a

√ 2

3√ 2

√ 2

Câu 106. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√ 3

a3√ 3

a3√ 3

6 .

Câu 107. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

A. 3

Câu 108. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

√ 13

Câu 109. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 110. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

2

a2√ 7

a2√ 5

11a2

32 .

Câu 111. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 112. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Trang 10

Câu 113. [1] Đạo hàm của làm số y = log x là

A y0 = 1

xln 10. B y

0 = ln 10

1

0 = 1

x.

Câu 114. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3

√ 2

a3

√ 2

a3

√ 2

6 .

Câu 115. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 116. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

ln 2

2 .

Câu 117. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 6 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.

Câu 118. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 3

a3√ 2

3√ 3

Câu 119. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 120 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

Z

dx = x + C, C là hằng số

C.

Z

1

xdx= ln |x| + C, C là hằng số D.

Z

xαdx= α + 1xα+1 + C, C là hằng số

Câu 121. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 122. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 123. Tìm giá trị của tham số m để hàm số y= −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 124. [1] Tập xác định của hàm số y= log3(2x+ 1) là

2

!

2

!

2;+∞

!

2;+∞

!

Câu 125. Dãy số nào có giới hạn bằng 0?

A un= −2

3

!n B un = n2− 4n C un = n3− 3n

n+ 1 . D un = 6

5

!n

Câu 126. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

Ngày đăng: 07/04/2023, 22:05