1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 1 (192)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 1 (192)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 149,68 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [2 c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1; e] là A M = e−2 + 2;[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2+ 2; m = 1 B M = e−2+ 1; m = 1

C M = e2− 2; m = e−2+ 2 D M = e−2

− 2; m= 1

Câu 2. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 3. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

2x ln x. B y

0 = 2x ln 2 C y0 = 2x ln x D y0 = 1

ln 2.

Câu 4. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√3

a√6

a√6

2 .

Câu 5. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 6. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 7. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 8 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C B.

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số

C.

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C D. Z f(x)dx

!0

= f (x)

Câu 9. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3

√ 3

a3

√ 5

a3

√ 5

12 .

Câu 10. [1] Tính lim1 − 2n

3n+ 1 bằng?

A −2

1

2

3.

Câu 11. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 12. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 13. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

A. 9

11

2 .

Câu 14. Khối đa diện đều loại {3; 5} có số cạnh

Trang 2

Câu 15 Mệnh đề nào sau đây sai?

A Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

B.

Z

f(x)dx

!0

= f (x)

C F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

D Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

Câu 16. Tính lim 2n

2− 1 3n6+ n4

Câu 17. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 18. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 1

2.

Câu 19. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

Câu 20. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 21. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B −2 < m < −1 C (−∞; −2] ∪ [−1; +∞) D −2 ≤ m ≤ −1.

Câu 22. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 23 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

B.

Z

u0(x)

u(x)dx= log |u(x)| + C

C Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

Câu 24. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 25. Dãy số nào sau đây có giới hạn khác 0?

A. sin n

1

1

n+ 1

n .

Trang 3

Câu 26. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3√

3

8a3√ 3

4a3√ 3

a3

√ 3

9 .

Câu 27. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

A. abc

b2+ c2

a2+ b2+ c2 B. a

b2+ c2

a2+ b2+ c2 C. b

a2+ c2

a2+ b2+ c2 D. c

a2+ b2

a2+ b2+ c2

Câu 28. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞

f(x)

g(x) = a

C lim

x→ +∞[ f (x) − g(x)]= a − b D lim

x→ +∞[ f (x)+ g(x)] = a + b

Câu 29. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3 .

Câu 30. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 31. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 32. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 33. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 34. [1] Biết log6 √a= 2 thì log6abằng

Câu 35. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 36. Khẳng định nào sau đây đúng?

A Hình lăng trụ đứng là hình lăng trụ đều.

B Hình lăng trụ tứ giác đều là hình lập phương.

C Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

D Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

Câu 37. Cho

Z 1 0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

Câu 38. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Trang 4

Câu 39. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

√ 3

√ 3

3

4.

Câu 40. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

− 1 D xy0 = ey+ 1

Câu 41. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

√ 2

√ 2

3 .

Câu 42. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 43. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. a

5a

8a

2a

9 .

Câu 44. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3√

3

3√

3√ 3

a3

4 .

Câu 45. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 46. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

2

a3√ 3

a3√ 3

a3√ 6

48 .

Câu 47. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 48. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 49. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

Câu 50. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

A 3 − 4

Câu 51. Khối đa diện đều loại {4; 3} có số cạnh

Câu 52. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 53 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 B.

Z ( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx

C.

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx D.

Z

f(x)g(x)dx=

Z

f(x)dx Z g(x)dx

Trang 5

Câu 54. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 55. [12215d] Tìm m để phương trình 4x +√1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 9

3

3

4.

Câu 56. Tìm giới hạn lim2n+ 1

n+ 1

Câu 57. Khối đa diện đều loại {3; 5} có số mặt

Câu 58. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 59 Phát biểu nào sau đây là sai?

n = 0

C lim un= c (Với un = c là hằng số) D lim 1

nk = 0 với k > 1

Câu 60. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 61. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số nghịch biến trên khoảng (−∞; 2).

C Hàm số đồng biến trên khoảng (0;+∞) D Hàm số đồng biến trên khoảng (0; 2).

Câu 62. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 2ac

3b+ 3ac

3b+ 2ac

3b+ 3ac

c+ 1 .

Câu 63. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Trục thực.

B Trục ảo.

C Hai đường phân giác y= x và y = −x của các góc tọa độ

D Đường phân giác góc phần tư thứ nhất.

Câu 64. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 65. Khối đa diện đều loại {4; 3} có số mặt

Câu 66. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 67. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng

A 1+ 2 sin 2x B −1+ sin x cos x C −1+ 2 sin 2x D 1 − sin 2x.

Câu 68. Hàm số y= x + 1

x có giá trị cực đại là

Câu 69. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối 12 mặt đều B Khối 20 mặt đều C Khối bát diện đều D Khối tứ diện đều.

Trang 6

Câu 70. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 71. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 72. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 73 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 74. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 75. Khối lập phương thuộc loại

Câu 76. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 77 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

B.

Z

k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

C.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

D.

Z

[ f (x)+ g(x)]dx =

Z

f(x)dx+

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

Câu 78. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 79. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = a3

3

2 . B V = 3a3√

3 C V = 6a3 D V = 3a3

√ 3

2 .

Câu 80. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 81. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Trang 7

Câu 82. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 83. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3

a3√ 3

a3√ 3

a3√ 3

12 .

Câu 84. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 85. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x +3trên đoạn [0; 2] là

Câu 86. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 87. Tính lim

x→3

x2− 9

x −3

Câu 88. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 89. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

a

√ 6

a

√ 6

√ 6

Câu 90. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có f0(x)= F(x)

D Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

Câu 91. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

A. 3

Câu 92. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 3 lần B Tăng gấp 9 lần C Tăng gấp 27 lần D Tăng gấp 18 lần.

Câu 93. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

Câu 94. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

3

2.

Câu 95. Khối đa diện đều loại {3; 5} có số đỉnh

Trang 8

Câu 96. [3] Cho hình lập phương ABCD.A BC D có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

2a√3

√ 3

3 .

Câu 97. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 3

a3√ 2

3√ 3

Câu 98. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

A m = ±√3 B m= ±√2 C m= ±3 D m= ±1

Câu 99. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 100. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp tứ giác.

B Hai khối chóp tam giác.

C Một khối chóp tam giác, một khối chóp ngữ giác.

D Hai khối chóp tứ giác.

Câu 101. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc

45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3

a3

√ 5

a3

√ 15

a3

√ 15

25 .

Câu 102. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 103. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

a

√ 38

3a√38

3a√58

29 .

Câu 104. [2] Đạo hàm của hàm số y = x ln x là

A y0 = x + ln x B y0 = ln x − 1 C y0 = 1 + ln x D y0 = 1 − ln x

Câu 105. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 106. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. 11a

2

a2√2

a2√5

a2√7

8 .

Câu 107. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 8 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 4 đỉnh, 6 cạnh, 4 mặt.

Câu 108. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3+3x2+(m−1)x+2m−3 đồng biến trên khoảng

có độ dài lớn hơn 1

A m > −5

5

4 < m < 0 D m ≥ 0.

Trang 9

Câu 109. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

2; 3

!

"

2;5 2

!

Câu 110 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A. a

α

aβ = aα B aαβ = (aα

C aαbα = (ab)α

D aα+β = aα.aβ

Câu 111. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 112. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 113. [1] Đạo hàm của làm số y = log x là

A y0 = 1

1

0 = 1

xln 10. D y

0 = ln 10

x .

Câu 114. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 115. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 116. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các số tự nhiên Tính S = m2+ 2n3

Câu 117 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

B Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

C Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

Câu 118. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 3, 5 triệu đồng B 50, 7 triệu đồng C 20, 128 triệu đồng D 70, 128 triệu đồng.

Câu 119. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√3

a3√3

a3√3

4 .

Câu 120. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

2.

Câu 121. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Trang 10

Câu 122. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu f (x)= g(x) + 1, ∀x ∈ R thì

Z

f0(x)dx=

Z

g0(x)dx

B Nếu

Z

f(x)dx=

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R

C Nếu

Z

f(x)dx=

Z g(x)dx thì f (x)= g(x), ∀x ∈ R

D Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

Câu 123. [4-1244d] Trong tất cả các số phức z= a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A. 9

5

13

23

100.

Câu 124. Khối chóp ngũ giác có số cạnh là

Câu 125. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 2

2√e.

Câu 126. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3

2a3√ 3

4a3√ 3

2a3

3 .

Câu 127. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 128. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x

lần lượt là

A.

√ 2

Câu 129. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2

− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 130. Hàm số f có nguyên hàm trên K nếu

C f (x) có giá trị nhỏ nhất trên K D f (x) có giá trị lớn nhất trên K.

HẾT

Ngày đăng: 07/04/2023, 21:58

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN