1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 1 (269)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề Ôn Tập Toán Thptqg 1
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán Học
Thể loại Đề Thi
Định dạng
Số trang 12
Dung lượng 149,94 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tìm m để hàm số y = mx − 4 x + m đạt giá trị lớn nhất bằng 5 trên [−2; 6] A 26 B 67 C 34 D 45 Câu 2 [1] Đạ[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 2. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln 2 B y0 = 1

2x ln x. C y

0 = 2x ln x D y0 = 1

ln 2.

Câu 3 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 4. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

5

a3

√ 15

a3

a3

√ 15

5 .

Câu 5. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

B Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

C Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

D Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

Câu 6. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 7. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối bát diện đều D Khối 20 mặt đều.

Câu 8. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối lập phương D Khối tứ diện đều.

Câu 9. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3) − √ 6

3x+ 1 Tính

Z 1 0

f(x)dx

Câu 10. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tam giác.

B Hai hình chóp tứ giác.

C Một hình chóp tam giác và một hình chóp tứ giác.

D Một hình chóp tứ giác và một hình chóp ngũ giác.

Trang 2

Câu 11. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin x+ 2cos x

lần lượt là

A 2

2 và 3 C 2 và 2

Câu 12. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 13. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

2 .

Câu 14. Thể tích của khối lập phương có cạnh bằng a

√ 2

3√ 2

3 .

Câu 15. Cho I = Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 16. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 17. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

ln 10. C f

0 (0)= 10 D f0(0)= ln 10

Câu 18. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

A m = ±√3 B m= ±√2 C m= ±3 D m= ±1

Câu 19. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 20. Khối chóp ngũ giác có số cạnh là

Câu 21. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 22 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

B.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

C.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

D.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

Câu 23. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. 2a

3√

6

a3√3

a3√3

a3√6

12 .

Trang 3

Câu 24. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

15

a3

√ 5

3√

3√ 6

3 .

Câu 25. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 26. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A.

"

−2

3;+∞

! B. " 2

5;+∞

!

5

#

3

#

Câu 27. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√6

a3√6

a3√6

8 .

Câu 28. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 29. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 30. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

A.

√ 3

Câu 31. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

3a√58

a√38

3a√38

29 .

Câu 32. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

B Hàm số nghịch biến trên khoảng (−2; 1).

C Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

Câu 33. Khối lập phương thuộc loại

Câu 34. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

a2+ b2 B. √ ab

a2+ b2 C. √ 1

2

a2+ b2

Câu 35. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 36. Xác định phần ảo của số phức z= (√2+ 3i)2

Trang 4

Câu 37. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

2.

Câu 38. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√3

a√6

a√6

7 .

Câu 39. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 4a

3√

3

5a3√3

2a3√3

a3√3

2 .

Câu 40. Dãy số nào sau đây có giới hạn là 0?

A. 4

e

!n

3

!n

3

!n

3

!n

Câu 41. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 42. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

√ 3

2 . D P= −1 − i

√ 3

Câu 43. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 44. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 45. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 46. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

2.

Câu 47. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 48. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A a

√ 6

√ 6

Câu 49. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Trang 5

Câu 50. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 51. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 52. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 53. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 2

a3

√ 3

a3

√ 3

4 .

Câu 54. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 55. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B −2 ≤ m ≤ −1 C (−∞; −2] ∪ [−1; +∞) D −2 < m < −1.

Câu 56. Hàm số nào sau đây không có cực trị

A y = x3

− 3x B y= x4

− 2x+ 1 C y= x +1

x. D y= x −2

2x+ 1.

Câu 57. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh của khối chóp bằng số mặt của khối chóp.

B Số đỉnh của khối chóp bằng số cạnh của khối chóp.

C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

D Số đỉnh của khối chóp bằng số mặt của khối chóp.

Câu 58. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 59. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 60. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey+ 1 B xy0 = −ey+ 1 C xy0 = −ey

− 1

Câu 61 Hình nào trong các hình sau đây không là khối đa diện?

Câu 62. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 27 lần B Tăng gấp 3 lần C Tăng gấp 18 lần D Tăng gấp 9 lần.

Câu 63 Mệnh đề nào sau đây sai?

A.

Z

f(x)dx

!0

= f (x)

B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

D Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

Trang 6

Câu 64. Tìm giá trị nhỏ nhất của hàm số y= (x2

− 2x+ 3)2

− 7

Câu 65. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 66. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A.

√ 17

√ 5

Câu 67. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 3

1

√ 3

Câu 68. Tứ diện đều thuộc loại

Câu 69. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 70. Khẳng định nào sau đây đúng?

A Hình lăng trụ đứng là hình lăng trụ đều.

B Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

C Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

D Hình lăng trụ tứ giác đều là hình lập phương.

Câu 71. Biểu thức nào sau đây không có nghĩa

A (−

Câu 72. Khối đa diện đều loại {3; 5} có số mặt

Câu 73. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 74. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 75. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 76. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Một tứ diện đều và bốn hình chóp tam giác đều.

B Bốn tứ diện đều và một hình chóp tam giác đều.

C Năm tứ diện đều.

D Năm hình chóp tam giác đều, không có tứ diện đều.

Trang 7

Câu 77. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. 2a

57

a√57

√ 57

19 .

Câu 78. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 79. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 80. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 B. ab

a2+ b2 C. √ ab

a2+ b2 D. √ 1

a2+ b2

Câu 81. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 82. Hàm số y= x + 1

x có giá trị cực đại là

Câu 83. Khối đa diện đều loại {3; 3} có số mặt

Câu 84. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng 2n+1.

B Số đỉnh của khối chóp bằng 2n+ 1

C Số mặt của khối chóp bằng số cạnh của khối chóp.

D Số cạnh của khối chóp bằng 2n.

Câu 85. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A a3

3√ 3

a3√ 2

a3√ 3

2 .

Câu 86. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng

Câu 87. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 88. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có f0(x)= F(x)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 89. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 90. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

A |z| = 2√5 B |z|= √4

Trang 8

Câu 91. Tính lim

x→ +∞

x −2

x+ 3

A −2

Câu 92. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 93. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 94. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 95. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

√ 3

Câu 96. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 97. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 98. Dãy số nào sau đây có giới hạn khác 0?

A. 1

1

sin n

n+ 1

n .

Câu 99. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 100. Tính lim

x→1

x3− 1

x −1

Câu 101. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 4035

2017

2016

2017.

Câu 102. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

log2a. B log2a= 1

loga2. C log2a= − loga2 D log2a= loga2

Câu 103. Cho

Z 1 0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

4.

Câu 104. Khối đa diện đều loại {3; 4} có số mặt

Câu 105. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

Trang 9

Câu 106. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

a

a√3

2 .

Câu 107. Khối đa diện đều loại {4; 3} có số cạnh

Câu 108. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 109. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

13 .

Câu 110. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

a3

3

6 .

Câu 111. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3

2a3

4a3√ 3

2a3√ 3

3 .

Câu 112. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3

√ 5

a3

√ 3

a3

√ 5

6 .

Câu 113. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey+ 1 B xy0 = −ey

Câu 114. Cho khối lăng trụ đứng ABC.A0B0C0có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = 6a3

B V = 3a3√

3 C V = a3

√ 3

2 . D V = 3a3

√ 3

2 .

Câu 115. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

A. 3

Câu 116. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

A. 7

5

Câu 117. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 118. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2+ 2; m = 1 B M = e2− 2; m = e−2+ 2

− 2; m= 1

Trang 10

Câu 119. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)g(x)]= ab B lim

x→ +∞[ f (x) − g(x)]= a − b

C lim

x→ +∞

f(x)

g(x) = a

Câu 120. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 121 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

xαdx= xα+1

α + 1+ C, C là hằng số. B.

Z 0dx = C, C là hằng số

C.

Z

1

xdx= ln |x| + C, C là hằng số D.

Z

dx = x + C, C là hằng số

Câu 122. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3

2a3√3

a3

4a3√3

3 .

Câu 123. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

e.

Câu 124. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 2

1

e2

Câu 125. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 126. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị nhỏ nhất trên K B f (x) xác định trên K.

C f (x) có giá trị lớn nhất trên K D f (x) liên tục trên K.

Câu 127. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A.

Câu 128. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 129 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 B.

Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx

C.

Z

f(x)g(x)dx=Z f(x)dx

Z

Z ( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx

Câu 130. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

HẾT

Ngày đăng: 07/04/2023, 21:56

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN